[1] 兰梓睿. 人口数量与消费结构对城市生活垃圾减量的影响[J]. 西北人口, 2021, 42(06): 17-25.
[2] 中国人民共和国生态环境部. 2020年全国大、中城市固体废物污染环境防治年报[EB/OL].
[2021-06-18]. https://www.mee.gov.cn/ywgz/gtfwyhxpgl/gtfw/202012/P020201228557295103367.pdf.
[3] RENDEK E, DUCOM G, GERMAIN P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash[J]. Journal of Hazardous Materials, 2006, 128(1): 73-79.
[4] 国家发展改革委.《“十四五”城镇生活垃圾分类和处理设施发展规划》. [EB/OL].
[2021-06-18]. http://www.gov.cn/zhengce/zhengceku/2021-05/14/content_5606349.htm.
[5] 吴昊, 刘宏博, 田书磊, 等. 城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报, 2021, 11(05): 1034-1040.
[6] 陈志良.机械化学法降解垃圾焚烧飞灰中二噁英及协同稳定化重金属的机理研究[D]. 浙江大学, 2019.
[7] 宋珍霞, 王里奥, 林祥, 等. 城市垃圾焚烧飞灰特性及水泥固化试验研究[J]. 环境科学研究, 2008, 21(4): 163-168.
[8] CHEN WM, WANG F, LI Z, et al. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process[J]. Waste Management, 2020, 114: 107-114.
[9] DU B, LI JT, FANG W, et al. Characterization of naturally aged cement-solidified MSWI fly ash[J]. Waste Management, 2018, 80: 101-111.
[10]宋倩楠, 王峰, 童立志, 等. 药剂螯合对飞灰重金属形态及浸出行为的影响[J]. 应用化工, 2021, 50(03): 571-576.
[11]童立志. 焚烧飞灰螯合效果评价方法优化及新型高分子螯合剂合成[D]. 哈尔滨工业大学, 2020.
[12]MA WC, CHEN DM, PAN MH, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177.
[13]赵昂然, 任强强. 硅灰对城市固体垃圾焚烧飞灰熔融特性的影响[J]. 中国粉体技术, 2021, 27(4): 16-26.
[14]张楚, 王爽. 城市垃圾焚烧飞灰高温熔融处理实验研究[J]. 辽宁石油化工大学学报, 2019, 39(6): 31-35.
[15]方正, 王俊杰, 赵震乾, 等. 城市生活垃圾焚烧飞灰熔融制备微晶玻璃技术现状分析及其研究进展[J]. 环境污染与防治, 2021, 43(4): 506-509.
[16]CHEN WS, CHANG FC, SHEN YH, et al. Removal of chloride from MSWI fly ash[J]. Journal of Hazardous Materials, 2012, 237: 116-120.
[17]WEIBEL G, EGGENBERGER U, KULIK D A, et al. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution[J]. Waste Management, 2018, 76: 457-471.
[18]YEN CP, ZHOU SY, SHEN YH. The Recovery of Ca and Zn from the municipal solid waste incinerator fly ash[J]. Sustainability, 2020, 12(21): 9086.
[19]WANG Q, YANG J, WANG Q, et al. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash[J]. Journal of Hazardous Materials, 2009, 162(2-3): 812-818.
[20]VAVVA C, VOUTSAS E, MAGOULAS K. Process development for chemical stabilization of fly ash from municipal solid waste incineration[J]. Chemical Engineering Research and Design, 2017, 125: 57-71.
[21]ZHENG L, GAO X, WANG W, et al. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Frontiers of Environmental Science & Engineering, 2020, 14(1): 1-11.
[22]TIAN X, RAO F, LEON-PATINO CA, et al. Co-disposal of MSWI fly ash and spent caustic through alkaline-activation: Immobilization of heavy metals and organics[J]. Cement and Concrete Composites, 2020, 114: 103824.
[23]DONTRIROS S, LIKITLERSUANG S, JANJAROEN D. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions[J]. Waste Management, 2020, 101: 44-53.
[24]GOMEZ E, RANI DA, CHEESEMAN CR, et al. Thermal plasma technology for the treatment of wastes: A critical review[J]. Journal of Hazardous Materials, 2009, 161(2-3): 614-626.
[25]COLANGELO F, CIOFFI R, MONTAGNARO F, et al. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material[J]. Waste Management, 2012, 32(6): 1179-1185.
[26]LIU YS, ZHENG LT, LI XD, et al. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures[J]. Journal of Hazardous Materials, 2009, 162(1): 161-173.
[27]FAN CC, WANG BM, AI H, et al. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash[J]. Journal of Environmental Management, 2022, 305: 114345.
[28]叶暾旻, 王伟, 高兴保, 等. 我国垃圾焚烧飞灰性质及其重金属浸出特性分析[J]. 环境科学, 2007(11): 2646-2650.
[29]KIRK DW, CHAN CCY, MARSH H. Chromium behavior during thermal treatment of MSW fly ash[J]. Journal of Hazardous Materials, 2002, 90(1): 39-49.
[30]WEY MY, LIU KY, TSAI TH, et al. Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln[J]. Journal of Hazardous Materials, 2006, 137(2): 981-989.
[31]GONG B, DENG Y, YANG Y, et al. Solidification and biotoxicity assessment of thermally treated municipal solid waste incineration (MSWI) fly ash[J]. International Journal of Environmental Research and Public Health, 2017, 14(6): 626.
[32]SUN XL, GUO Y, YAN YB, et al. Co-processing of MSWI fly ash and copper smelting wastewater and the leaching behavior of the co-processing products in landfill leachate[J]. Waste Management, 2019, 95: 628-635.
[33]HU HY, LIU H, SHEN WQ, et al. Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China[J]. Chemosphere, 2013, 93(4): 590-596.
[34]JIAO FC, ZHANG L, DONG ZB, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152: 108-115.
[35]TANG JF, SU MH, WU QH, et al. Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption[J]. Journal of Cleaner Production, 2019, 234: 139-149.
[36]LUO HW, CHENG Y, HE DQ, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of The Total Environment, 2019, 668: 90-103.
[37]LI JH, JIA CJ, LU Y, et al. Multivariate analysis of heavy metal leaching from urban soils following simulated acid rain[J]. Microchemical Journal, 2015, 122: 89-95.
[38]ZHANG JE, OUYANG Y, LING DJ. Impacts of simulated acid rain on cation leaching from the Latosol in south China[J]. Chemosphere, 2007, 67(11): 2131-2137.
[39]ZHAO CC, REN SX, ZUO QQ, et al. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain[J]. Science of The Total Environment, 2018, 627: 553-560.
[40]LI WH, SUN YJ, XIN MX, et al. Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: release behavior, environmental risk, and dissolution mechanism of toxic metals[J]. Science of The Total Environment, 2020, 744: 140857.
[41]MA WC, FANG YH, CHEN DM, et al. Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace[J]. Fuel, 2017, 210: 145-153.
[42]WANG L, CHEN Q, JAMRO IA, et al. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash[J]. Environmental Science and Pollution Research, 2016, 23(12): 12107-12119.
[43]TANG JF, STEENARI BM. Solvent extraction separation of copper and zinc from MSWI fly ash leachates[J]. Waste Management, 2015, 44: 147-154.
[44]PAN Y, WU ZM, ZHOU J, et al. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China[J]. Journal of Hazardous Materials, 2013, 261: 269-276.
[45]FEDJE KK, EKBERG C, SKARNEMARK G, et al. Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods[J]. Journal of Hazardous Materials, 2010, 173(1-3): 310-317.
[46]YUE Y, ZHANG J, SUN FC, et al. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash[J]. Journal of Environmental Management, 2019, 232: 226-235.
[47]SHIM YS, RHEE SW, LEE WK. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan[J]. Waste Management, 2005, 25(5): 473-480.
[48]CAO YN, LUO JJ, SUN SQ. Characteristics of MSWI fly ash with acid leaching treatment[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1208-1218.
[49]ELOMAA H, SEISKO S, LEHTOLA J, et al. A study on selective leaching of heavy metals vs. iron from fly ash[J]. Journal of Material Cycles and Waste Management, 2019, 21(4): 1004-1013.
[50]ZHANG HY, ZHAO YC, QI JY. Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: product characterization and environmental toxicity[J]. Waste Management, 2011, 31(2): 331-341.
[51]WAN X, WANG W, YE T, et al. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure[J]. Journal of Hazardous Materials, 2006, 134(1-3): 197-201.
[52]ZHANG HY, ZHAO YC, QI JY. Study on use of MSWI fly ash in ceramic tile[J]. Journal of Hazardous Materials, 2007, 141(1): 106-114.
[53]LIU J, HU L, TANG LP, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021, 402: 123451.
[54]LIU SJ, GUO YP, YANG HY, et al. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash[J]. Journal of Environmental Management, 2016, 182: 328-334.
[55]GAO XB, WANG W, YE TM, et al. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate[J]. Journal of Environmental Management, 2008, 88(2): 293-299.
[56]PADMI T, TANAKA M, AOYAMA I. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: heavy metals and ecotoxicity evaluation[J]. Waste Management, 2009, 29(7): 2065-2070.
[57]SUN YY, XU CB, YANG WJ, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid‐waste incineration fly ash: behaviors and mechanisms[J]. Journal of the Chinese Chemical Society, 2019, 66(2): 188-196.
[58]郝玉, 徐宏勇, 柏舸, 等. 垃圾焚烧飞灰中Cd、Pb、Zn的螯合稳定与水泥固化处理[J]. 环境工程学报, 2018, 12(08): 2357-2362.
[59]王金波, 秦瑞香, 袁茂林, 等. 复合化学螯合药剂稳定垃圾焚烧飞灰中的重金属[J]. 化学研究与应用, 2013, 25(10): 1397-1402.
[60]王彩萍, 周明凯, 陈潇, 等. 氯氧镁水泥对焚烧飞灰固化作用及影响因素[J]. 功能材料, 2013, 44(21): 3186-3189.
[61]GUO XL, SHI HS, HU WP, et al. Durability and microstructure of CSA cement-based materials from MSWI fly ash[J]. Cement and Concrete Composites, 2014, 46: 26-31.
[62]GIRSKAS G, KIZINIEVIČ O, KIZINIEVIČ V. Analysis of durability (frost resistance) of MSWI fly ash modified cement composites[J]. Archives of Civil and Mechanical Engineering, 2021, 21(2): 1-12.
[63]董世翔, 钱光人.利用MSWI飞灰构建新型填埋固化基质的研究[J].环境科学学报, 2005(08): 1052-1057.
[64]蒋旭光, 常威.生活垃圾焚烧飞灰的处置及应用概况[J]. 浙江工业大学学报, 2015, 43(01): 7-17.
[65]ZHAO X, WANG L, WANG L, et al. Distribution of remaining Cd in MSWI fly ash washed with nitric acid[J]. Journal of Material Cycles and Waste Management, 2017, 19(4): 1415-1422.
[66]HONG KJ, TOKUNAGA S, KAJIUCHI T. Extraction of heavy metals from MSW incinerator fly ashes by chelating agents[J]. Journal of Hazardous Materials, 2000, 75(1): 57-73.
[67]PEDERSEN AJ. Evaluation of assisting agents for electrodialytic removal of Cd, Pb, Zn, Cu and Cr from MSWI fly ash[J]. Journal of Hazardous Materials, 2002, 95(1-2): 185-198.
[68]WANG Y, PAN Y, ZHANG L, et al. Can washing-pretreatment eliminate the health risk of municipal solid waste incineration fly ash reuse?[J]. Ecotoxicology and Environmental Safety, 2015, 111: 177-184.
[69]Ferone C, Colangelo F, Messina F, et al. Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials[J]. Materials, 2013, 6(8): 3420-3437.
[70]MANGIALARDI T. Effects of a washing pre-treatment of municipal solid waste incineration fly ash on the hydration behaviour and properties of ash—Portland cement mixtures[J]. Advances in Cement Research, 2004, 16(2): 45-54.
[71]HU HY, LIU H, ZHANG Q, et al. Sintering characteristics of CaO-rich municipal solid waste incineration fly ash through the addition of Si/Al-rich ash residues[J]. Journal of Material Cycles and Waste Management, 2016, 18(2): 340-347.
[72]QIAN GR, SONG Y, ZHANG CG, et al. Diopside-based glass-ceramics from MSW fly ash and bottom ash[J]. Waste Management, 2006, 26(12): 1462-1467.
[73]ZHAO SZ, WEN Q, ZHANG XY, et al. Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge[J]. Ceramics International, 2021, 47(15): 21599-21609.
[74]DU B, LI JT, FANG W, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution, 2019, 250: 68-78.
[75]QUINA MJ, BORDADO JCM, QUINTA FRM. Chemical stabilization of air pollution control residues from municipal solid waste incineration[J]. Journal of Hazardous Materials, 2010, 179(1-3): 382-392.
[76]ZHANG BR, ZHOU WX, ZHAO HP, et al. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator[J]. Waste Management, 2016, 50: 105-112.
[77]ZHANG ML, GUO MR, ZHANG BR, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer[J]. Waste Management, 2020, 105: 289-298.
[78]KITAMURA H, SAWADA T, SHIMAOKA T, et al. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment[J]. Environmental Science and Pollution Research, 2016, 23(1): 734-743.
[79]WONG GJ, FAN XH, GAN M, et al. Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: A novel thermal treatment[J]. Journal of Cleaner Production, 2020, 263: 121400.
[80]LI WH, SUN YJ, HUANG YM, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416.
[81]杨光, 包兵, 丁文川, 等. 有机螯合剂与磷酸盐联合稳定垃圾焚烧飞灰中重金属的作用机理[J]. 环境工程学报, 2019, 13(8): 1967-1976.
[82]LEDERER J, TRINKEL V, FELLNER J. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria[J]. Waste management, 2017, 60: 247-258.
[83]ZHANG YY, WANG L, CHEN L, et al. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives[J]. Journal of Hazardous Materials, 2021, 411: 125132.
[84]魏云梅, 姚瑞轩, 陈爽, 等. 生活垃圾焚烧飞灰加速碳酸化深度除氯与水洗除氯对比研究[J]. 中国环境科学, 2021, 41(9): 4184-4192.
[85]武博然, 王冬扬, 柴晓利. 生活垃圾焚烧飞灰生物脱氯机制研究[J]. 中国环境科学, 2015(8).
[86]张芝昆, 王晶, 李浩天, 等. 城市垃圾焚烧飞灰的水洗脱氯与水泥固化技术[J]. 科学技术与工程, 2019, 19(35): 395-401.
[87]周珍雄, 邵倩, 余姮蓉, 等. 垃圾焚烧飞灰水洗脱氯资源化研究[J]. 广东化工, 2021, 48(6): 106-107, 116.
[88]ZHU FF, TAKAOKA M, OSHITA K, et al. Chlorides behavior in raw fly ash washing experiments[J]. Journal of Hazardous Materials, 2010, 178(1-3): 547-552.
[89]熊金磊. 我国城市生活垃圾焚烧飞灰中高氯含量特性及其影响[J]. 中国资源综合利用, 2019, 37(6): 117-119.
[90]PAN JR, HUANG C, KUO JJ, et al. Recycling MSWI bottom and fly ash as raw materials for Portland cement[J]. Waste Management, 2008, 28(7): 1113-1118.
[91]王梦璐, 汪群慧, 王晓娜, 等. 生活垃圾渗滤液脱除垃圾焚烧飞灰中氯及重金属的实验[J]. 环境工程, 2019, 37(9): 144-148.
[92]YE N, CHEN Y, YANG J, et al. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system[J]. Journal of Hazardous Materials, 2016, 318: 70-78.
[93]邹庐泉, 李娜, 洪瑞金. 湿法预处理对垃圾焚烧飞灰中氯离子及重金属的去除研究[J]. 安徽农业科学, 2010, 38(31): 17627-17628.
[94]王月香, 邵兰燕, 徐天男, 等. 垃圾焚烧飞灰中氯元素存在形态及深度脱氯的研究[J]. 无机盐工业, 2021, 53(5): 78-83.
[95]陈雄飞, 毕亚凡, 张宏波, 等. 城市垃圾焚烧飞灰湿式脱氯工艺研究[C]. 2015年中国环境科学学会年会论文集. 2015:4113-4120.
[96]孙福成. 垃圾焚烧飞灰的湿法预处理及其作为水泥原料的应用研究[D]. 上海:上海大学, 2008.
[97]OTTOSEN LM, LIMA AT, PEDERSEN AJ, et al. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(4): 553-559.
[98]LI HL, MUHAMMAD F, YAN YJ, et al. Electrokinetic remediation of heavy metals from municipal solid waste incineration fly ash pretreated by nitric acid[J]. Royal Society Open Science, 2018, 5(8): 180372.
[99]FERREIRA CD, JENSEN P, OTTOSEN L, et al. Preliminary treatment of MSW fly ash as a way of improving electrodialytic remediation[J]. Journal of Environmental Science and Health Part A, 2008, 43(8): 837-843.
[100]刘春, 黎小保, 刘海威, 等. 生活垃圾焚烧飞灰脱氯降解工艺研究[J]. 环境卫生工程, 2014(4): 16-18.
[101]邓燚超. 垃圾焚烧飞灰低中温热处理过程中氯及重金属的迁徙特性分析[D]. 浙江大学, 2007.
[102]GU QY, WANG TW, WU W, et al. Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures[J]. Chemical Engineering Journal, 2021, 414: 128756.
[103]YANG ZZ, TIAN SC, JI R, et al. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration[J]. Waste Management, 2017, 68: 221-231.
[104]YANG RB, LIAO WP, WU PH. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan[J]. Journal of Environmental Management, 2012, 104: 67-76.
[105]WANG XX, LI AM, ZHANG ZK. The effects of water washing on cement-based stabilization of MSWI fly ash[J]. Procedia Environmental Sciences, 2016, 31: 440-446.
[106]CHEN ZL, LU SY, TANG MH, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management, 2019, 88: 182-190.
[107]BAYUSENO AP, SCHMAHL WW, Müllejans T. Hydrothermal processing of MSWI Fly Ash-towards new stableminerals and fixation of heavy metals[J]. Journal of Hazardous Materials, 2009, 167(1-3): 250-259.
[108]LIAO WP, YANG RB, ZHOU ZX, et al. Electrokinetic stabilization of heavy metals in MSWI fly ash after water washing[J]. Environmental Progress & Sustainable Energy, 2014, 33(4): 1235-1241.
[109]ZHAO KX, HU YY, TIAN YY, et al. Chlorine removal from MSWI fly ash by thermal treatment: Effects of iron/aluminum additives[J]. Journal of Environmental Sciences, 2020, 88: 112-121.
[110]CHEN XF, BI YF, ZHANG HB, et al. Chlorides removal and control through water-washing process on MSWI fly ash[J]. Procedia Environmental Sciences, 2016, 31: 560-566.
[111]WANG L, CHEN Q, JAMRO IA, et al. Accelerated co-precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water[J]. RSC Advances, 2016, 6(24): 20173-20186.
[112]MANGIALARDI T. Disposal of MSWI fly ash through a combined washing-immobilisation process[J]. Journal of Hazardous Materials, 2003, 98(1-3): 225-240.
[113]YAN DH, PENG Z, YU LF, et al. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash[J]. Waste Management, 2018, 76: 106-116.
[114]BOOM DA, DEGREZ M. Combining sieving and washing, a way to treat MSWI boiler fly ash[J]. Waste Management, 2015, 39: 179-188.
[115]WANG L, JAMRO IA, CHEN Q, et al. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing[J]. Waste Management & Research, 2016, 34(3): 184-194.
[116]WANG KS, CHIANG KY, LIN KL, et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash[J]. Hydrometallurgy, 2001, 62(2): 73-81.
[117]WANG XX, ZHANG L, ZHU KY, et al. Efficiently sintering of MSWI fly ash at a low temperature enhanced by in-situ pressure assistant: Process performance and product characterization[J]. Waste Management, 2021, 134: 21-31.
[118]WANG KS, SUN CJ, LIU CY. Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash[J]. Waste Management, 2001, 21(1): 85-91.
[119]CHOU SY, LO SL, HSIEH CH, et al. Sintering of MSWI fly ash by microwave energy[J]. Journal of Hazardous Materials, 2009, 163(1): 357-362.
[120]WANG KS, SUN CJ, YEH CC. The thermotreatment of MSW incinerator fly ash for use as an aggregate: a study of the characteristics of size-fractioning[J]. Resources, Conservation and Recycling, 2002, 35(3): 177-190.
[121]JAKOB A, STUCKI S, STRUIS RPWJ. Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates[J]. Environmental Science & Technology, 1996, 30(11): 3275-3283.
[122]YUE Y, LIU ZY, LIU ZZ, et al. Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2019, 238: 144-152.
[123]XIE K, HU HY, XU SH, et al. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes[J]. Waste Management, 2020, 103: 334-341.
[124]NOWAK B, PESSL A, ASCHENBRENNER P, et al. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment[J]. Journal of Hazardous Materials, 2010, 179(1-3): 323-331.
[125]NOWAK B, ROCHA SF, ASCHENBRENNER P, et al. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J].Chemical Engineering Journal, 2012, 179: 178-185.
[126]YU J, QIAO Y, JIN LM, et al. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China[J]. Waste Management, 2015, 46: 287-297.
[127]KURASHIMA K, MATSUDA K, KUMAGAI S, et al. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash[J]. Waste Management, 2019, 87: 204-217.
[128]YU J, SUN LS, MA C, et al. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl2·6H2O[J]. Waste Management, 2016, 49: 124-130.
[129]WANG XX, JI GZ, ZHU KY, et al. Integrated thermal behavior and compounds transition mechanism of municipal solid waste incineration fly ash during thermal treatment process[J]. Chemosphere, 2020, 264: 128406.
[130]ZHANG ZK, LI AM, WANG XX, et al. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag[J]. Waste Management, 2016, 56: 238-245.
[131]FAN CC, WANG BM, QI Y, et al. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders[J]. Waste Management, 2021, 131: 277-285.
[132]LI J, ZHANG SQ, WANG Q, et al. Feasibility of using fly ash–slag-based binder for mine backfilling and its associated leaching risks[J]. Journal of Hazardous Materials, 2020, 400: 123191.
[133]LONG L, JIANG XG, LV GJ, et al. Comparison of MSWI fly ash from grate-type and circulating fluidized bed incinerators under landfill leachate corrosion scenarios: the long-term leaching behavior and speciation of heavy metals[J]. Environmental Science and Pollution Research, 2021: 1-11.
[134]WANG YT, HU Y, XUE C, et al. Risk assessment of lead and cadmium leaching from solidified/stabilized MSWI fly ash under long-term landfill simulation test[J]. Science of The Total Environment, 2021: 151555.
[135]何品晶, 吴长淋, 章骅, 等. 生活垃圾焚烧飞灰及其稳定化产物的长期浸出行为[J]. 环境化学, 2008(06): 786-790.
[136]阮煜. 水热法协同处置不同炉型的垃圾焚烧飞灰及其机理研究[D]. 浙江大学, 2019.
[137]LUO HW, WU YC, ZHAO AQ, et al. Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds[J]. Journal of Cleaner Production, 2017, 162: 411-419.
[138]YAKUBU Y, ZHOU J, PING D, et al. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2018, 207: 243-248.
[139]ALLEGRINI E, BUTERA S, KOSSON DS, et al. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection[J]. Waste Management, 2015, 38: 474-485.
[140]WANG HW, FAN XX, WANG YN, et al. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid[J]. Journal of Environmental Management, 2018, 208: 15-23.
[141]QIU Q, JIANG X, CHEN Z, et al. Leaching of heavy metals from MSWI fly ash: experiments vs. simulation[J]. Archives of Environmental Protection, 2018, 44(2): 55-61.
[142]BERNASCONI D, CAVIGLIA C, DESTEFANIS E, et al. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash[J]. Waste Management, 2022, 138: 318-327.
[143]深圳市气象局. 深圳市社会发展和现代化统计监测年报(2018年全年)[EB/OL].
[2021-06-18]. http://weather.sz.gov.cn/xingxigongkai/tongjishuju/shujujiedu/content/post_3569348.html.
[144]XIAO XY, JIANG ZC, GUO ZH, et al. Effect of simulated acid rain on leaching and transformation of vanadium in paddy soils from stone coal smelting area[J]. Process Safety and Environmental Protection, 2017, 109: 697-703.
[145]BAUSACH M, KRAMMER G, CUNILL F. Reaction of Ca(OH)2 with HCl in the presence of water vapour at low temperatures[J]. Thermochimica Acta, 2004, 421(1-2): 217-223.
[146]李新颖. 城市生活垃圾焚烧飞灰固化稳定化机制及活性矿物水化产物表征[D]. 东华大学, 2015.
[147]郝玉. 生活垃圾焚烧飞灰特性及重金属螯合稳定/水泥固化处理研究[D]. 华东理工大学, 2018.
[148]梁龙云. 垃圾焚烧飞灰重金属固化实验研究[D]. 华中科技大学, 2016
[149]赵剑. 城市生活垃圾焚烧飞灰胶凝活性及其固化/稳定化技术研究[D]. 重庆大学, 2017.
[150]陈星. 垃圾焚烧发电厂飞灰重金属特性及稳定化研究[D]. 河南大学, 2017.
[151]马懿, 郑仁栋, 周志昊, 等. 生活垃圾焚烧飞灰处置技术与应用瓶颈[J]. 环境工程:1-11.
[2022-01-07].http://kns.cnki.net/kcms/detail/11.2097.X.20211014.1802.008.html.
[152]吕紫娟, 王华伟, 孙英杰, 等. 山东胶东地区城市生活垃圾焚烧飞灰重金属污染特性研究[J]. 青岛理工大学学报, 2021, 42(01):9-17.
[153]GHOSH SN. Thermochemical effects on the formation of Ca3SiO5[J]. Journal of Materials Science, 1978, 13(12): 2739-2741.
[154]FORSTER M. Investigations to convert CO2, NaCl and H2O into Na2CO3 and HCl by thermal solar energy with high solar efficiency[J]. Journal of CO2 Utilization, 2014, 7: 11-18.
[155]OKADA K, WATANABE N, JHA KV, et al. Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3[J]. Applied Clay Science, 2003, 23(5-6): 329-336.
[156]CHENG N, JENKINS DM, HUANG F. Dehydration of glaucophane in the system Na2O–MgO–Al2O3–SiO2–H2O and the effects of NaCl-, CO2- and silicate-bearing aqueous fluids[J]. Journal of Petrology, 2019, 60(12): 2369-2386.
[157]MCCOY M, LEE WE, HEUER AH. Crystallization of MgO‐Al2O3‐SiO2‐ZrO2 Glasses[J]. Journal of the American Ceramic Society, 1986, 69(3): 292-296.
[158]HÄUSLER F, SCHMIDT H, FREYER D. Calcium hydroxide chlorides: the ternary system Ca(OH)2‐CaCl2‐H2O at 25, 40, and 60ºC, phase stoichiometry and crystal structure[J]. Journal of Inorganic and General Chemistry, 2019, 645(10): 723-731.
[159]杨景杰. 垃圾焚化飞灰机械化学稳定后废水回用于水洗单元之可行性研究[D]. 淡江大学水资源及环境工程学系, 2017.
[160]WANG XX, ZHANG L, ZHU KY, et al. Distribution and chemical species transition behavior of chlorides in municipal solid waste incineration fly ash during the pressure-assisted sintering treatment[J]. Chemical Engineering Journal, 2021, 415: 128873.
[161]MATTENBERGER H, FRAIßLER G, BRUNNER T, et al. Sewage sludge ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment[J]. Waste Management, 2008, 28(12): 2709-2722.
[162]MITRAKAS MG, SIKALIDIS CA, KARAMANLI TP. Immobilization of EAFD heavy metals using acidic materials[J]. Journal of Environmental Science and Health, Part A, 2007, 42(4): 535-541.
[163]JAK E, ZHAO BJ, HAYES PC. Experimental study of phase equilibria in the “FeO”-ZnO-(CaO+SiO2) system with the CaO/SiO2 weight ratio of 0.71 at metallic iron saturation[J]. Metallurgical and Materials Transactions B, 2002, 33(6): 865-876.
[164]JAK E, HAYES PC, LIU N. Experimental study of phase equilibria in the systems PbOx-CaO and PbOx-CaO-SiO2[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 541-553.
[165]WANG XD, SUMMERS CJ, WANG ZL. Mesoporous single‐crystal ZnO nanowires epitaxially sheathed with Zn2SiO4[J]. Advanced Materials, 2004, 16(14): 1215-1218.
[166]陈勇, 张衍国, 李清海, 等.垃圾焚烧中氯化物对重金属Pb迁移转化特性的影响[J]. 燃料化学学报, 2008(3): 354-359.
[167]CHEN S, ZHAO BJ, HAYES PC, et al. Experimental study of phase equilibria in the PbO-Al2O3-SiO2 system[J]. Metallurgical and Materials Transactions B, 2001, 32(6): 997-1005.
[168]LU XW, SHIH K. Incorporation Mechanism of stabilizing simulated lead-laden sludge in aluminum-rich ceramics[J]. International Journal of Environmental and Ecological Engineering, 2012, 6(9): 626-631.
[169]SALMAN SM, SALAMA SN, ABO-MOSALLAM HA. Crystallization characteristics and physico-chemical properties of glass–ceramics based on Li2O–ZnO–SiO2 system[J]. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017, 56(5): 205-214.
[170]ROCHDI N, BOUJLAIDI AE, AFKIR A, et al. Deposition and properties of ZnSiO3-containing zinc oxide thin films reactively sputtered at room temperature[J]. Thin Solid Films, 2020, 709: 138218.
[171]KRSTIĆ I, ZEC S, LAZAREVIĆ VB, et al. Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure[J]. Science of Sintering, 2018, 50(2): 139-147.
[172]ITO T, YAMAGUCHI H, OKABE K, et al. Single-crystal growth and characterization of Cu2O and CuO[J]. Journal of Materials Science, 1998, 33(14): 3555-3566.
[173]HROVAT M, MAEDER T, JACQ C, et al. Subsolidus phase equilibria in the PbO-poor part of the TiO2–PbO–SiO2 system and its application in low-temperature thick-film dielectrics[J]. Journal of Materials Research, 2006, 21(12): 3210-3214.
[174]BERSANI M, MORTEN B, PRUDENZIATI M, et al. Interactions between lead oxide and ceramic substrates for thick film technology[J]. Journal of Materials Research, 1997, 12(2): 501-508.
[175]WHITE J S. Lorettoite discredited and chubutite reviewed[J]. American mineralogist, 1979, 64(11-12): 1303-1305.
[176]PERSHIN PS, BURICH AA, KHALIMULLINA YR, et al. Electrode processes during the electrorefiniment of lead in the KCl-PbCl2-PbO melt[J]. Chimica Techno Acta, 2015, 2(2): 108-115.
[177]ITOH T. Role of CuO for the decarbonation of BaCO3 and CaCO3 in the solid-state reaction of CuO with BaCO3 and that of CuO with CaCO3[J]. Journal of Materials Science Letters, 2003, 22(3): 185-189.
修改评论