中文版 | English
题名

强剪切流刷涂制备有机太阳能电池

其他题名
ENHANCED SHEAR FLOW PRINTING OF ORGANIC SOLAR CELLS
姓名
姓名拼音
DU Gengxin
学号
11930577
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
邓巍巍
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-17
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机太阳能电池具有可通过溶液法处理、兼容卷对卷生产工艺、便于制备柔性器件的特点,成为近年来新能源领域的研究热点。当前单结有机太阳能电池功率转换效率(PCE)已超过18%,已达到商业化应用的门槛。但距离产业化生产仍有一段距离,主要因为:器件活性层形貌可控性和重复性不理想;缺乏兼顾器件效率和大面积生产工艺过程的有机半导体薄膜制备方法。

本文提出了一种新颖的柔性微梳刷涂方法,该方法加强了溶液法制备薄膜过程中的剪切流和拉伸流,消除了当前大面积生产工艺的弊端,实现了活性层形貌的稳定控制和优于标准旋涂器件的性能。引入了Landau-Levich模型和液膜找平模型,并根据实验结果对模型进行修正,发现了柔性微梳刷涂薄膜制备过程的找平规律。通过Star-CCM模拟刷涂过程,得到了刷涂时梳齿附近剪切率和拉伸应变速率分布,并证实了溶液找平过程与液膜状态的关系。在研究微梳刷涂流体力学过程的基础上,分别制备了有机太阳能电池的空穴传输层、活性层和电子传输层,并实现了全刷涂方法制备有机太阳能电池器件。对比了刷涂与旋涂方法在薄膜形貌和器件光电性能方面的差异,结果证明刷涂法可显著提高薄膜结晶度,诱导给受体形成合适域尺寸的相分离形貌,从而实现刷涂器件光电转换效率(PCE=15.93%)优于旋涂器件(PCE=15.37%)。此外,微梳刷片的柔性使得刷片可直接与基底接触,便于在柔软或弯曲的基材上制备器件。本研究通过微梳刷涂方法制备的柔性器件PCE达到13.62%,是当前报道的非旋涂工艺制备柔性器件最高效率之一。这些结果证明柔性微梳刷涂是一种制备高性能有机太阳能电池的可靠方法。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表


[1] ZHONG M, LI Y, DU G, et al. Soft porous blade printing of nonfullerene organic solar cells [J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25843-52.
[2] LI Y, DENG L, DU G, et al. Additive-free organic solar cells with enhanced efficiency enabled by unidirectional printing flow of high shear rate [J]. Organic Electronics, 2021, 97: 106274.
[3] CELIK I, PHILLIPS A B, SONG Z, et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration [J]. Energy & Environmental Science, 2017, 10(9): 1874-84.
[4] ZHAN L, LI S, XIA X, et al. Layer‐by‐layer processed ternary organic photovoltaics with efficiency over 18% [J]. Advanced Materials, 2021, 33(12): 2007231.
[5] LIU Q, JIANG Y, JIN K, et al. 18% Efficiency organic solar cells [J]. Science Bulletin, 2020, 65(4): 272-5.
[6] CUI Y, YAO H, ZHANG J, et al. Single‐junction organic photovoltaic cells with approaching 18% efficiency [J]. Advanced Materials, 2020, 32(19): 1908205.
[7] YIN H, YAN C, HU H, et al. Recent progress of all-polymer solar cells–From chemical structure and device physics to photovoltaic performance [J]. Materials Science and Engineering: R: Reports, 2020, 140: 100542.
[8] SUN C, PAN F, BIN H, et al. A low cost and high performance polymer donor material for polymer solar cells [J]. Nature Communications, 2018, 9(1): 1-10.
[9] SHAW L, HAYOZ P, DIAO Y, et al. Direct uniaxial alignment of a donor–acceptor semiconducting polymer using single-step solution shearing [J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9285-96.
[10] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells [J]. Nature communications, 2015, 6(1): 1-10.
[11] HONG L, YAO H, WU Z, et al. Eco‐compatible solvent‐processed organic photovoltaic cells with over 16% efficiency [J]. Advanced materials, 2019, 31(39): 1903441.
[12] PATEL B B, DIAO Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces [J]. Nanotechnology, 2017, 29(4): 044004.
[13] MULLIN J W. Crystallization [M]. Elsevier, 2001.
[14] PODZOROV V. Long and winding polymeric roads [J]. Nature materials, 2013, 12(11): 947-8.
[15] WANG G, ADIL M A, ZHANG J, et al. Large‐area organic solar cells: material requirements, modular designs, and printing methods [J]. Advanced Materials, 2019, 31(45): 1805089.
[16] DIAO Y, SHAW L, BAO Z, et al. Morphology control strategies for solution-processed organic semiconductor thin films [J]. Energy & Environmental Science, 2014, 7(7): 2145-59.
[17] KARUNAKARAN S K, ARUMUGAM G M, YANG W, et al. Recent progress in inkjet-printed solar cells [J]. Journal of Materials Chemistry A, 2019, 7(23): 13873-902.
[18] ZHAO X, DENG W. Printing photovoltaics by electrospray [J]. Opto-electronic Advances, 2020, 3(6): 190038-1.
[19] ZHAO H, NAVEED H B, LIN B, et al. Hot hydrocarbon‐solvent slot‐die coating enables high‐efficiency organic solar cells with temperature‐dependent aggregation behavior [J]. Advanced Materials, 2020, 32(39): 2002302.
[20] WU Q, GUO J, SUN R, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting [J]. Nano Energy, 2019, 61: 559-66.
[21] ZHANG L, LIN B, HU B, et al. Blade‐cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability [J]. Advanced Materials, 2018, 30(22): 1800343.
[22] GIRI G, VERPLOEGEN E, MANNSFELD S C B, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain [J]. Nature, 2011, 480(7378): 504-8.
[23] WANG G, FENG L-W, HUANG W, et al. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems [J]. Proceedings of the National Academy of Sciences, 2020, 117(30): 17551-7.
[24] XU J, WU H-C, ZHU C, et al. Multi-scale ordering in highly stretchable polymer semiconducting films [J]. Nature Materials, 2019, 18(6): 594-601.
[25] MOHAMMADI E, ZHAO C, MENG Y, et al. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films [J]. Nature Communications, 2017, 8(1): 1-11.
[26] LE BERRE M, CHEN Y, BAIGL D. From convective assembly to Landau− Levich deposition of multilayered phospholipid films of controlled thickness [J]. Langmuir, 2009, 25(5): 2554-7.
[27] YUAN Y, GIRI G, AYZNER A L, et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method [J]. Nature Communications, 2014, 5(1): 1-9.
[28] LIN F J, GUO C, CHUANG W T, et al. Directional solution coating by the chinese brush: A facile approach to improving molecular alignment for high‐performance polymer TFTs [J]. Advanced Materials, 2017, 29(34): 1606987.
[29] PARK K S, KWOK J J, DILMURAT R, et al. Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow [J]. Science Advances, 2019, 5(8): eaaw7757.
[30] GU X, SHAW L, GU K, et al. The meniscus-guided deposition of semiconducting polymers [J]. Nature Communications, 2018, 9(1): 1-16.
[31] SHAW L, DIAO Y, MARTIN-NOBLE G C, et al. Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating [J]. MRS Bulletin, 2021, 46(5): 380-93.
[32] DIAO Y, TEE B C K, GIRI G, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains [J]. Nature Materials, 2013, 12(7): 665-71.
[33] LANDAU L, LEVICH B. Dragging of a liquid by a moving plate [M]//PELCé P. dynamics of curved fronts. San Diego; Academic Press. 1988: 141-53.
[34] BAI C, GOSMAN A D. Mathematical modelling of wall films formed by impinging sprays [J]. SAE Transactions, 1996: 782-96.
[35] SUN K, ZHANG S, LI P, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices [J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 4438-62.
[36] KUMAR S, KIM H, KIM D-K, et al. Spin and doctor-blade coated PEDOT: PSS back electrodes in inverted organic solar cells [J]. Solar Energy, 2020, 204: 64-70.
[37] WAN J, FAN X, HUANG H, et al. Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes [J]. Journal of Materials Chemistry A, 2020, 8(40): 21007-15.
[38] LIU X, ZHENG Z, WANG J, et al. Fluidic manipulating of printable zinc oxide for flexible organic solar cells [J]. Advanced Materials, 2021: e2106453.
[39] YAO J, QIU B, ZHANG Z-G, et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells [J]. Nature Communications, 2020, 11(1): 1-10.
[40] QIN Y, CHANG Y, ZHU X, et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells [J]. Nano Today, 2021, 41: 101289.
[41] ZHANG Y, DENG D, LU K, et al. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells [J]. Advanced Materials, 2015, 27(6): 1071-6.
[42] LI D, CHEN X, CAI J, et al. Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency [J]. Science China Chemistry, 2020, 63(10): 1461-8.
[43] SCHAFFER C J, PALUMBINY C M, NIEDERMEIER M A, et al. Morphological degradation in low bandgap polymer solar cells–an in operando study [J]. Advanced Energy Materials, 2016, 6(19): 1600712.
[44] SCHAFFER C J, PALUMBINY C M, NIEDERMEIER M A, et al. A direct evidence of morphological degradation on a nanometer scale in polymer solar cells [J]. Advanced Materials, 2013, 25(46): 6760-4.
[45] MOSEGUÍ GONZÁLEZ D, SCHAFFER C J, PRÖLLER S, et al. Codependence between crystalline and photovoltage evolutions in P3HT: PCBM solar cells probed with in-operando GIWAXS [J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3282-7.
[46] MüLLER‐BUSCHBAUM P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques [J]. Advanced Materials, 2014, 26(46): 7692-709.
[47] ZHANG J, YAN C, WANG W, et al. Panchromatic ternary photovoltaic cells using a nonfullerene acceptor synthesized using C–H functionalization [J]. Chemistry of Materials, 2018, 30(2): 309-13.
[48] WANG W, YAN C, LAU T K, et al. Fused hexacyclic nonfullerene acceptor with strong near‐infrared absorption for semitransparent organic solar cells with 9.77% efficiency [J]. Advanced Materials, 2017, 29(31): 1701308.
[49] MAI J, LU H, LAU T-K, et al. High efficiency ternary organic solar cell with morphology-compatible polymers [J]. Journal of Materials Chemistry A, 2017, 5(23): 11739-45.
[50] LIN Y, HE Q, ZHAO F, et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency [J]. Journal of the American Chemical Society, 2016, 138(9): 2973-6.
[51] LIAO H-C, TSAO C-S, LIN T-H, et al. Quantitative nanoorganized structural evolution for a high efficiency bulk heterojunction polymer solar cell [J]. Journal of the American Chemical Society, 2011, 133(33): 13064-73.
[52] XIAO Y, LU X. Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques [J]. Materials Today Nano, 2019, 5: 100030.
[53] LIAO H-C, TSAO C-S, SHAO Y-T, et al. Bi-hierarchical nanostructures of donor–acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells [J]. Energy & Environmental Science, 2013, 6(6): 1938-48.
[54] MELIANAS A, PRANCULIS V, XIA Y, et al. Photogenerated carrier mobility significantly exceeds injected carrier mobility in organic solar cells [J]. Advanced Energy Materials, 2017, 7(9): 1602143.
[55] WAN J, ZHANG L, HE Q, et al. High‐performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor [J]. Advanced Functional Materials, 2020, 30(14): 1909760.
[56] MIN J, LUPONOSOV Y N, GASPARINI N, et al. Effects of alkyl terminal chains on morphology, charge generation, transport, and recombination mechanisms in solution‐processed small molecule bulk heterojunction solar cells [J]. Advanced Energy Materials, 2015, 5(17): 1500386.
[57] WANG J, ZHANG J, XIAO Y, et al. Effect of isomerization on high-performance nonfullerene electron acceptors [J]. Journal of the American Chemical Society, 2018, 140(29): 9140-7.
[58] SALLEO A. Charge transport in polymeric transistors [J]. Materials Today, 2007, 10(3): 38-45.
[59] YANG P, ZHAI T, YU B, et al. Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air [J]. Journal of Materials Chemistry A, 2021, 9(32): 17198-210.
[60] SONG W, FAN X, XU B, et al. All‐solution‐processed metal‐oxide‐free flexible organic solar cells with over 10% efficiency [J]. Advanced Materials, 2018, 30(26): 1800075.
[61] YAN T, SONG W, HUANG J, et al. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy [J]. Advanced Materials, 2019, 31(39): 1902210.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TK511
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335768
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
杜更新. 强剪切流刷涂制备有机太阳能电池[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930577-杜更新-力学与航空航天(3963KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杜更新]的文章
百度学术
百度学术中相似的文章
[杜更新]的文章
必应学术
必应学术中相似的文章
[杜更新]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。