[1] SILVA B N, KHAN M, HAN K. Towards Sustainable Smart Cities: A Review Of Trends, Architectures, Components, And Open Challenges In Smart Cities[J]. Sustainable Cities And Society, 2018, 38: 697-713.
[2] ZHU L, YU F R, WANG Y, et al. Big Data Analytics In Intelligent Transportation Systems: A Survey[J]. IEEE Transactions On Intelligent Transportation Systems, 2018, 20(1): 383-398.
[3] FERDOWSI A, CHALLITA U, SAAD W. Deep Learning For Reliable Mobile Edge Analytics In Intelligent Transportation Systems: An Overview[J]. IEEE Vehicular Technology Magazine, 2019, 14(1): 62-70.
[4] 余辰, 张丽娟, 金海. 大数据驱动的智能交通系统研究进展与趋势[J]. 物联网学报, 2018, 2(1): 56-63.
[5] 李国勇. “十四五”城市轨道交通的发展与安全[J]. 城市轨道交通, 2021.
[6] WILSON G, COOK D J. A Survey Of Unsupervised Deep Domain Adaptation[J]. ACM Transactions On Intelligent Systems And Technology (TIST), 2020, 11(5): 1-46.
[7] 任远. 城市病和高密度城市的精细化管理[J]. 社会科学, 2018(5): 76-82.
[8] 沈洁, 张可云. 中国大城市病典型症状诱发因素的实证分析[J]. 地理科学进展, 2020, 39(1): 1-12.
[9] 高柯夫, 孙宏彬, 王楠, 等. “互联网 +”智能交通发展战略研究[J]. 中国工程科学, 2020,22(4): 101-105.
[10] 徐凤. 城市交通运行效率指标体系的构建与应用[J]. 交通科技与经济, 2018, 20(2): 18-22.
[11] 拉萨主干道通行时长降低 26.%,科技打造高原城市“治堵范本”[EB/OL]. 2021.
[12] SMITH B L, DEMETSKY M J. Traffic Flow Forecasting: Comparison Of Modeling Approaches[J]. journal Of Transportation Engineering, 1997, 123(4): 261-266.
[13] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A Temporal Graph Convolutional Network For Traffic Prediction[J]. IEEE Transactions On Intelligent Transportation Systems, 2019.
[14] YAO H, LIU Y, WEI Y, et al. Learning From Multiple Cities: A Meta-learning Approach For Spatial-temporal Prediction[C]//The World Wide Web Conference. 2019: 2181-2191.
[15] WANG L, GENG X, MA X, et al. Cross-city Transfer Learning For Deep Spatio-temporal Prediction[C]//Proceedings Of The 28th International Joint Conference On Artificial Intelligence. AAAI Press, 2019: 1893-1899.
[16] MALLICK T, BALAPRAKASH P, RASK E, et al. Transfer Learning With Graph Neural Networks For Short-Term Highway Traffic Forecasting[J]. arXiv:2004.08038, 2020.
[17] YU B, LEE Y, SOHN K. Forecasting Road Traffic Speeds by Considering Area-wide Spatiotemporal Dependencies based On A Graph Convolutional Neural Network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204.
[18] HOCHREITER S, SCHMIDHUBER J. Long Short-term Memory[J]. Neural Computation,1997, 9(8): 1735-1780.
[19] CHUNG J, GULCEHRE C, CHO K, et al. Empirical Evaluation Of Gated Recurrent Neural Networks On Sequence Modeling[C]//NIPS 2014 Workshop On Deep Learning, December2014. 2014.
[20] 张溪. 大数据下智能交通系统的发展综述[J]. 信息与电脑, 2019(1): 17-19.
[21] ABDULHAFEDH A. Road Traffic Crash Data: An Overview On Sources, Problems, AndCollection Methods[J]. journal Of Transportation Technologies, 2017, 7(2): 206-219.
[22] SOH J W, CHO S, CHO N I. Meta-transfer Learning For Zero-shot Super-resolution[C]// Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. 2020: 3516-3525.
[23] LI X, GRANDVALET Y, DAVOINE F, et al. Transfer Learning In Computer Vision Tasks: Remember Where You Come From[J]. Image And Vision Computing, 2020, 93: 103853.
[24] KIM Y, SOH J W, PARK G Y, et al. Transfer Learning From Synthetic To Real-noise Denoising With Adaptive Instance Normalization[C]//Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. 2020: 3482-3492.
[25] BLLOSHMI R, TRIPODI R, NAVIGLI R. Enabling Cross-Lingual AMR Parsing With Transfer Learning Techniques[C]//Proceedings Of The 2020 Conference On Empirical Methods In Natural Language Processing (EMNLP). 2020: 2487-2500.
[26] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient Transfer Learning For NLP[C]//International Conference On Machine Learning. PMLR, 2019: 2790-2799.
[27] RUDER S, PETERS M E, SWAYAMDIPTA S, et al. Transfer Learning In Natural Language Processing[C]//Proceedings Of The 2019 Conference Of The North American Chapter Of The Association For Computational Linguistics: Tutorials. 2019: 15-18.
[28] WANG J, HUANG P, ZHAO H, et al. Billion-scale Commodity Embedding For E-commerce Recommendation In Alibaba[C]//Proceedings Of The 24th ACM SIGKDD International Conference On Knowledge Discovery & Data Mining. 2018: 839-848.
[29] YE J, CHENG H, ZHU Z, et al. Predicting Positive And Negative Links In Signed Social Networks by Transfer Learning[C]//Proceedings Of The 22nd International Conference On World Wide Web. 2013: 1477-1488.
[30] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548.
[31] NAGY A M, SIMON V. Survey On Traffic Prediction In Smart Cities[J]. Pervasive And MobileComputing, 2018, 50: 148-163.
[32] MANIBARDO E L, LAÑA I, DEL SER J. Deep Learning For Road Traffic Forecasting: Does It Make A Difference?[J]. IEEE Transactions On Intelligent Transportation Systems, 2021.
[33] CUI Z, HENRICKSON K, KE R, et al. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework For Network-scale Traffic Learning And Forecasting[J]. IEEE Transactions On Intelligent Transportation Systems, 2019, 21(11): 4883-4894
[34] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS: Neural basis Expansion Analysis For Interpretable Time Series Forecasting[C]//International Conference On Learning Representations. 2020.
[35] ZHOU T, HAN G, XU X, et al. 𝛿-agree AdaBoost Stacked Autoencoder For Short-term Traffic Flow Forecasting[J]. Neurocomputing, 2017, 247: 31-38.
[36] LI Y, YU R, SHAHABI C, et al. Diffusion Convolutional Recurrent Neural Network: Data Driven Traffic Forecasting[C]//International Conference On Learning Representations. 2018.
[37] XIE Y, ZHANG Y, YE Z. Short-term Traffic volume Forecasting Using Kalman Filter With Discrete Wavelet Decomposition[J]. Computer-Aided Civil And Infrastructure Engineering, 2007, 22(5): 326-334.
[38] CHEN Z, WEN J, GENG Y. Predicting Future Traffic Using Hidden Markov Models[C]//2016 IEEE 24th International Conference On Network Protocols (ICNP). IEEE, 2016: 1-6.
[39] ZHANG C, YU J J, LIU Y. Spatial-temporal Graph Attention Networks: A Deep Learning Approach For Traffic Forecasting[J]. IEEE Access, 2019, 7: 166246-166256.
[40] YOU K, KOU Z, LONG M, et al. Co-tuning For Transfer Learning[J]. Advances In Neural Information Processing Systems, 2020, 33.
[41] SAITO K, WATANABE K, USHIKU Y, et al. Maximum Classifier Discrepancy For Unsupervised Domain Adaptation[C]//Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. 2018: 3723-3732.
[42] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial Discriminative Domain Adaptation [C]//Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. 2017: 7167-7176.
[43] LONG M, CAO Y, WANG J, et al. Learning Transferable Features With Deep Adaptation Networks[C]//International Conference On Machine Learning. PMLR, 2015: 97-105.
[44] SUN B, SAENKO K. Deep Coral: Correlation Alignment For Deep Domain Adaptation[C]// European Conference On Computer Vision. Springer, 2016: 443-450.
[45] LI C L, CHANG W C, CHENG Y, et al. Mmd Gan: Towards Deeper Understanding Of Moment Matching Network[C]//Advances In Neural Information Processing Systems: volume 30. 2017.
[46] LI X, HU Y, ZHENG J, et al. Central Moment Discrepancy based Domain Adaptation For Intelligent bearing Fault Diagnosis[J]. Neurocomputing, 2021, 429: 12-24.
[47] PURUSHOTHAM S, CARVALHO W, NILANON T, et al. Variational Recurrent Adversarial Deep Domain Adaptation[C]//International Conference On Learning Representations 2017. 2017.
[48] WILSON G, DOPPA J R, COOK D J. Multi-source Deep Domain Adaptation With Weak Supervision For Time-series Sensor Data[C]//Proceedings Of The 26th ACM SIGKDD International Conference On Knowledge Discovery & Data Mining. 2020: 1768-1778.
[49] ZOU X, ZHANG S, ZHANG C, et al. Long-term Origin-Destination Demand Prediction With Graph Deep Learning[J]. IEEE Transactions On Big Data, 2021.
[50] YU J J. Citywide Traffic Speed Prediction: A Geometric Deep Learning Approach[J]. Knowledge-Based Systems, 2021, 212: 106592.
[51] CHEN H, GRANT-MULLER S, MUSSONE L, et al. A Study Of Hybrid Neural NetworkApproaches And The Effects Of Missing Data On Traffic Forecasting[J]. Neural Computing & Applications, 2001, 10(3): 277-286.
[52] WU P, XU L, HUANG Z. Imputation Methods Used In Missing Traffic Data: A Literature Review[C]//International Symposium On Intelligence Computation And Applications. Springer, 2019: 662-677.
[53] REDMAN T C. If Your Data Is bad, Your Machine Learning Tools Are Useless[J]. Harvard Business Review, 2018, 2.
[54] LAÑA I, OLABARRIETA I I, VÉLEZ M, et al. On The Imputation Of Missing Data For Road Traffic Forecasting: New Insights And Novel Techniques[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 18-33.
[55] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term Traffic Forecasting: Where We Are And Where We’re Going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19.
[56] YU R, LI Y, SHAHABI C, et al. Deep Learning: A Generic Approach For Extreme Condition Traffic Forecasting[C]//Proceedings Of The 2017 SIAM International Conference On Data Mining. SIAM, 2017: 777-785.
[57] CHEN X, HE Z, SUN L. A Bayesian Tensor Decomposition Approach For Spatiotemporal Traffic Data Imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84.
[58] Yanjie Duan, Yisheng Lv, Wenwen Kang, et al. A Deep Learning based Approach For Traffic Data Imputation[C]//17th International IEEE Conference On Intelligent Transportation Systems (ITSC). 2014: 912-917.
[59] SMITH B L, SCHERER W T, CONKLIN J H. Exploring Imputation Techniques For Missing Data In Transportation Management Systems[J]. Transportation Research Record, 2003, 1836 (1): 132-142.
[60] GUO Q, QIU X, LIU P, et al. Star-Transformer[C]//Proceedings Of The 2019 Conference Of The North American Chapter Of The Association For Computational Linguistics: Human Language Technologies, volume 1 (Long And Short Papers). 2019: 1315-1325.
[61] DAI Z, YANG Z, YANG Y, et al. Transformer-Xl: Attentive Language Models Beyond A Fixed-Length Context[J]. The 57th Annual Meeting Of The Association For Computational Linguistics, 2019: 2978-2988.
[62] WU Z, LIU Z, LIN J, et al. Lite Transformer With Long-Short Range Attention[C]//International Conference On Learning Representations. 2019.
[63] YU Y, SI X, HU C, et al. A Review Of Recurrent Neural Networks: LSTM Cells And Network Architectures[J]. Neural Computation, 2019, 31(7): 1235-1270.
[64] CHEN Z, HUANG Y, LI J, et al. Improving Mask Learning Based Speech Enhancement System With Restoration Layers And Residual Connection.[C]//INTERSPEECH. 2017: 3632-3636.
[65] XU J, SUN X, ZHANG Z, et al. Understanding And Improving Layer Normalization[C]// Advances In Neural Information Processing Systems: volume 32. 2019
[66] TAKASE S, OKAZAKI N. Positional Encoding To Control Output Sequence Length[C]//Proceedings Of The 2019 Conference Of The North American Chapter Of The Association For Computational Linguistics: Human Language Technologies, volume 1 (Long And Short Papers). 2019: 3999-4004.
[67] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training Of Deep Bidirectional Transformers For Language Understanding[C]//Proceedings Of The 2019 Conference Of The North American Chapter Of The Association For Computational Linguistics: Human Language Technologies, volume 1 (Long And Short Papers). 2019: 4171-4186.
[68] GAL Y, GHAHRAMANI Z. Dropout As A bayesian Approximation: Representing Model Uncertainty In Deep Learning[C]//International Conference On Machine Learning. PMLR, 2016: 1050-1059.
[69] WU R, ZHANG A, ILYAS I, et al. Attention-based Learning For Missing Data Imputation In HoloClean[J]. Proceedings Of Machine Learning And Systems, 2020, 2: 307-325.
[70] VIG J, BELINKOV Y. Analyzing The Structure Of Attention In A Transformer Language Model[C]//Proceedings Of The 2019 ACL Workshop BlackboxNLP: Analyzing And Interpreting Neural Networks For NLP. 2019: 63-76.
[71] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C]//Advances In Neural Information Processing Systems: volume 30. 2017.
[72] KINGMA D P, BA J. Adam: A Method For Stochastic Optimization[J]. arXiv Preprint ArXiv:1412.6980, 2014.
[73] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85.
[74] SALAKHUTDINOV R, MNIH A. Bayesian Probabilistic Matrix Factorization Using MarkovChain Monte Carlo[C]//Proceedings Of The 25th International Conference On Machine Learning. 2008: 880-887.
[75] YOON J, JORDON J, SCHAAR M. Gain: Missing Data Imputation Using Generative Adversarial Nets[C]//International Conference On Machine Learning. PMLR, 2018: 5689-5698.
[76] XIAO Z, FU X, ZHANG L, et al. Traffic Pattern Mining And Forecasting Technologies In Maritime Traffic Service Networks: A Comprehensive Survey[J]. IEEE Transactions On Intelligent Transportation Systems, 2019, 21(5): 1796-1825.
[77] YAO H, TANG X, WEI H, et al. Revisiting Spatial-temporal Similarity: A Deep Learning Framework For Traffic Prediction[C]//Proceedings Of The AAAI Conference On Artificial Intelligence: volume 33. 2019: 5668-5675.
[78] LIU X, LIU X, WANG Y, et al. Detecting Anomaly In Traffic Flow From Road Similarity Analysis[C]//International Conference On Web-Age Information Management. Springer, 2016:92-104.
[79] LIU Q, CAI Y, JIANG H, et al. Traffic State Spatial-temporal Characteristic Analysis And Short-term Forecasting based On Manifold Similarity[J]. IEEE Access, 2018, 6: 9690-9702.
[80] ERMAGUN A, LEVINSON D. Spatiotemporal Traffic Forecasting: Review And Proposed Directions[J]. Transport Reviews, 2018, 38(6): 786-814
[81] WU Z, PAN S, LONG G, et al. Connecting The Dots: Multivariate Time Series Forecasting WithGraph Neural Networks[C]//Proceedings Of The 26th ACM SIGKDD International Conference On Knowledge Discovery & Data Mining. 2020: 753-763.
[82] SHANG C, CHEN J, BI J. Discrete Graph Structure Learning For Forecasting Multiple Time Series[C]//International Conference On Learning Representations. 2021.
[83] WU Z, PAN S, LONG G, et al. Graph WaveNet For Deep Spatial-Temporal Graph Modeling.[C]//Proceedings Of The 28th International Joint Conference On Artificial Intelligence. 2019.
[84] JIANG W, LUO J. Graph Neural Network For Traffic Forecasting: A Survey[J]. arXiv:2101.11174, 2021.
[85] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: Online Learning Of Social Representations [C]//Proceedings Of The 20th ACM SIGKDD International Conference On Knowledge Discov ery And Data Mining. 2014: 701-710.
[86] SUTSKEVER I, VINYALS O, LE Q V. Sequence To Sequence Learning With Neural Networks [C]//Advances In Neural Information Processing Systems: volume 27. 2014: 3104-3112.
[87] YU B, YIN H, ZHU Z. Spatio-temporal Graph Convolutional Networks: A Deep Learning Framework For Traffic Forecasting[C]//Proceedings Of The 27th International Joint Conference On Artificial Intelligence. 2018: 3634-3640.
[88] WU Z, PAN S, LONG G, et al. Graph WaveNet For Deep Spatial-Temporal Graph Modeling [C]//Proceedings Of The 28th International Joint Conference On Artificial Intelligence. 2019:1907-1913.
[89] XU M, DAI W, LIU C, et al. Spatial-temporal Transformer Networks For Traffic Flow Forecasting[J]. arXiv Preprint ArXiv:2001.02908, 2020.
[90] ZHANG J, ZHENG Y, QI D, et al. DNN-based Prediction Model For Spatio-Temporal Data [C]//Proceedings Of The 24th ACM SIGSPATIAL International Conference On Advances In Geographic Information Systems. 2016: 1-4.
[91] PEETA S, ZILIASKOPOULOS A K. Foundations Of Dynamic Traffic Assignment: The Past, The Present And The Future[J]. Networks And Spatial Economics, 2001, 1(3): 233-265.
[92] LUCAS B, PELLETIER C, SCHMIDT D, et al. A Bayesian-inspired, Deep Learning-based, Semi-supervised Domain Adaptation Technique For Land Cover Mapping[J]. Machine Learn ing, 2021: 1-33.
[93] ARIEF-ANG I B, SALIM F D, HAMILTON M. DA-HOC: Semi-supervised Domain Adap tation For Room Occupancy Prediction Using CO2 Sensor Data[C]//Proceedings Of The 4th ACM International Conference On Systems For Energy-Efficient Built Environments. 2017: 1-10.
[94] DENG J, ZHANG Z, EYBEN F, et al. Autoencoder-based Unsupervised Domain Adaptation For Speech Emotion Recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072.
[95] HUANG S W, LIN C T, CHEN S P, et al. Auggan: Cross Domain Adaptation With Gan based Data Augmentation[C]//Proceedings Of The European Conference On Computer Vision (ECCV). 2018: 718-731.
[96] ABDELWAHAB O, ELMAGHRABY A. Deep Learning-based Vs. Markov Chain-based Text Generation For Cross Domain Adaptation For Sentiment Classification[C]//2018 IEEE International Conference On Information Reuse And Integration (IRI). IEEE, 2018: 252-255.
[97] RIETZLER A, STABINGER S, OPITZ P, et al. Adapt Or Get Left Behind: Domain Adaptation Through BERT Language Model Finetuning For Aspect-Target Sentiment Classification[C]// Proceedings Of The 12th Language Resources And Evaluation Conference. 2020: 4933-4941.
[98] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial Training Of Neural Networks [J]. The journal Of Machine Learning Research, 2016, 17(1): 2096-2030.
[99] MACLAURIN D, DUVENAUD D, ADAMS R. Gradient-based Hyperparameter Optimiza tion Through Reversible Learning[C]//International Conference On Machine Learning. PMLR,2015: 2113-2122.
[100] SENER O, KOLTUN V. Multi-task Learning As Multi-objective Optimization[C]//Proceedings Of The 32nd International Conference On Neural Information Processing Systems. 2018: 525- 536.
[101] LUO Z Q, ZHANG S. On Extensions Of The Frank-Wolfe Theorems[J]. Computational Opti mization And Applications, 1999, 13(1): 87-110.
[102] YANG C, GIDOFALVI G. Fast Map Matching, An Algorithm Integrating Hidden Markov Model With Precomputation[J]. International journal Of Geographical Information Science, 2018, 32(3): 547 - 570.
[103] WANG L, GENG X, MA X, et al. Cross-city Transfer Learning For Deep Spatio-temporal Prediction[J]. arXiv Preprint ArXiv:1802.00386, 2018.
[104] CHEN D, LIN Y, LI W, et al. Measuring And Relieving The Over-smoothing Problem For Graph Neural Networks From The Topological View[C]//Proceedings Of The AAAI Conference On Artificial Intelligence: volume 34. 2020: 3438-3445.
修改评论