中文版 | English
题名

海洋古菌II(MGII)对球形棕囊藻的生态响应

其他题名
ECOLOGICAL RESPONSES OF MARINE GROUP II (MGII) ARCHAEA TO PHAEOCYSTIS GLOBOSA
姓名
姓名拼音
YAN Rongman
学号
11930322
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张传伦
导师单位
海洋科学与工程系
论文答辩日期
2022-05-06
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海洋古菌IIMarine Group IIMGII)是海洋水体中最主要的异养古菌,是海洋元素循环过程的重要参与者。前人研究发现海洋环境中典型赤潮藻类球形棕囊藻(Phaeocystis globosaP. globosa)的勃发可能造成MGII的暴发,但两者耦合机制尚不明确。本研究通过设计实验室内共培养实验,尝试从依附共生和有机质利用的角度,实验中设置加入活藻组、加入藻滤液组、加入F/2培养基组与空白组等,探究MGII对球形棕囊藻的响应;同时采样调研2021年深圳大澳湾球形棕囊藻赤潮后期环境,探究自然环境中MGII对球形棕囊藻暴发的响应。实验样品与环境样品结合,尝试探究影响MGII丰度变化的关键因素,推测MGII与球形棕囊藻的生态关系,加深二者在生态系统的碳循环过程中所起作用的理解。

研究结果表明共培养实验中,球形棕囊藻的藻体和去除藻体后的藻液都可以刺激MGII的丰度在三天内增加1-1.5个数量级,随后MGII迅速衰退,丰度下降3-4个数量级。有意思的是,活藻体存在的培养体系能够延缓MGII的衰退,延长MGII丰度维持在105 copies/L以上的时间,表明活藻体直接或间接不断产生的有机质能够维持MGII在短期内的生长。通过共培养实验样品与环境样品对比分析,发现球形棕囊藻主要影响MGIIa类群的丰度,表明MGIIa可能具有利用藻类有机质生长的能力。

对共培养实验与大澳湾赤潮后期环境样品利用三维荧光光谱方法,分析两类样品中荧光溶解性有机质(Fluorescent Dissolved Organic MatterFDOM)组分,发现类酪氨酸与类色氨酸在两次共培养实验中均被发现,而在环境样品中仅发现类色氨酸。关联分析FDOM组分变化与MGII的丰度变化,发现共培养实验中培养时间未超过三天的样品中,类色氨酸与MGII的丰度呈现正相关;在培养时间超过三天的实验样品以及赤潮后期环境样品中发现类色氨酸与MGII丰度呈现负相关,说明藻类勃发状态和赤潮末期水体两种不同的生境,对MGII的生长影响不同。

本研究通过共培养实验以及对环境样品的探究,进一步厘清了MGII对球形棕囊藻的生态响应,加深了对于水体富营养化背景下海洋异养古菌MGII扮演的角色的了解,也对MGII的富集与分离有积极的指导意义。

其他摘要

Marine Group II (MGII) Euryarchaeota are the most abundant heterotrophic archaea in the ocean and play an important role in marine elemental cycling. Previous studies have found that the bloom of Phaeocystis globosa (P. globosa), the dominant algal species of red tides in the marine environment, may cause the outbreak of MGII. But, the underlining interactions between the two species remain elusive. The objective of this study was to uncover MGII’s ecological response to P. globosa derived organic matter. We designed a laboratory co-culture experiment to investigate the response of MGII to P. globosa additions from the perspectives of microbial association and organic matter utilization. We also collected the late red tide seawater dominated by P. globosa in Da'ao Bay, Shenzhen in 2021 to investigate the response of MGII to P. globosa outbreak in the natural environment. Experimental samples were combined with environmental samples in order to investigate key biotic and abiotic factors influencing the growth and abundance dynamics of MGII, and to infer the ecological relationship between MGII and P. globosa.

Laboratory co-culture results showed that both algal cells and algal exuded dissolved organic matter (the algal growth media after the removal of algal cells) could stimulate the rapid growth of MGII in the first 3 days by 1-1.5 orders of magnitude. After that, MGII declined rapidly by 3-4 orders of magnitude. However, in the presence of P. globosa colonies, MGII abundance could be maintained above 105copies/L for a longer time, indicating that the continuous production of organic matter by living algae or associated microbes could be essential for the survival of MGII in the co-culture experiments. A comparative analysis of the laboratory co-cultures and in situ field samples showed that P. globosa colonies mainly affected the growth of MGIIa, indicating that MGIIa may be able to utilize algal organic matter to grow.

Using three-dimensional fluorescence spectroscopy, the analysis of the co-culture experiments samples and the environmental samples revealed that the protein-like components of fluorescent dissolved organic matter (FDOM) in the two types of samples were different. Tyrosine-like and tryptophan-like components were found in both co-culture experiments, while tryptophan-like component were found in the environmental samples. The correlation between the changes of FDOM and MGII abundance showed that tryptophan-like components was positively correlated with MGII abundance in the samples incubated for less than three days in the co-culture experiments, while tryptophan-like components was negatively correlated with MGII abundance in the experimental samples incubated for more than three days and in the environmental samples at the end of the red tide, suggesting the microniches during phytoplankton blooms or post blooms might have different influences on MGII growth in addition to tryptophan-like components.

In this study, co-culture experiments and environmental samples were used to investigate the ecological relationship between MGII and P. globosa, and to gain a deeper understanding of the role of MGII during phytoplankton blooms. Meanwhile, the co-culture experiments also serve as a clue for the enrichment and isolation of MGII.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1]JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8 (8): 593-9.
[2]WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms[J]. Proceedings of the National Academy of Sciences, 1977, 74 (11): 5088.
[3]WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences, 1990, 87 (12): 4576.
[4]SANTORO A E, RICHTER R A, DUPONT C L. Planktonic marine archaea[J]. Annual Review of Marine Science, 2019, 11: 131-158.
[5]FUHRMAN J A, MCCALLUM K, DAVIS A A. Novel major archaebacterial group from marine plankton[J]. Nature, 1992, 356 (6365): 148-149.
[6]DELONG E F. Archaea in coastal marine environments[J]. Proceedings of the National Academy of Sciences, 1992, 89 (12): 5685.
[7]VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304 (5667): 66.
[8]SCHLEPER C, JURGENS G, JONUSCHEIT M. Genomic studies of uncultivated archaea[J]. Nature Reviews Microbiology 2005, 3 (6): 479-88.
[9]KONNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437 (7058): 543-546.
[10]BROCHIER-ARMANET C, BOUSSAU B, GRIBALDO S, et al. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota[J]. Nature Reviews Microbiology, 2008, 6 (3): 245-252.
[11]KARNER M B, DELONG E F, KARL D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409 (6819): 507-510.
[12]FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281 (5374): 237-40.
[13]TANG K, JAKOBSEN H, VISSER A. Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: Feeding, growth, and trophic interactions among grazers[J]. Limnology and oceanography, 2001, 46: 1860-1870.
[14]BAUMANN M E M, LANCELOT C, BRANDINI F P, et al. The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach[J]. Journal of Marine Systems, 1994, 5 (1): 5-22.
[15]XU N, HUANG B, HU Z, et al. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2016, 35 (3): 557-565.
[16]郭皓, 丁德文, 林凤翱, 等. 近20a我国近海赤潮特点与发生规律[J]. 海洋科学进展, 2015, 33 (4): 547-558.
[17]王艳, 齐雨藻, 沈萍萍, 等. 温度和盐度对球形棕囊藻细胞DMSP产量的影响[J]. 水生生物学报, 2003, 027 (004): 367-371.
[18] SMITH W O, CODISPOTI L A, NELSON D M, et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J]. Nature, 1991, 352 (6335): 514-516.
[19]LIU J, YU S, ZHAO M, et al. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary[J]. FEMS Microbiology Ecology, 2014, 90 (2): 424-35.
[20]GALAND P E, LOVEJOY C, POULIOT J, et al. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem[J]. Journal of Marine Systems, 2008, 74 (3-4): 774-782.
[21]WANG Y, PAN J, YANG J, et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China[J]. Limnology and Oceanography, 2020, 65 (S1).
[22]BANO N, RUFFIN S, RANSOM B, et al. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages[J]. Applied and Environmental Microbiology, 2004, 70 (2): 781-9.
[23]DELONG E F, WU K Y, PRÉZELIN B B, et al. High abundance of archaea in Antarctic marine picoplankton[J]. Nature, 1994, 371 (6499): 695-697.
[24]GALAND P E, LOVEJOY C, VINCENT W F. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean[J]. Aquatic Microbial Ecology, 2006, 44: 115-126.
[25]SCHATTENHOFER M, FUCHS B M, AMANN R, et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean[J]. Environmental Microbiology, 2009, 11 (8): 2078-93.
[26]MINCER T J, CHURCH M J, TAYLOR L T, et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre[J]. Environmental Microbiology, 2007, 9 (5): 1162-75.
[27]DELONG E F, PRESTON C M, MINCER T, et al. Community genomics among stratified microbial assemblages in the ocean's interior[J]. Science, 2006, 311 (5760): 496-503.
[28]MASSANA R, TAYLOR L T, MURRAY A E, et al. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring[J]. Limnology and Oceanography, 1998, 43 (4): 607-617.
[29]ALISON E M, KE YING W, CRAIG L M, et al. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean[J]. Aquatic Microbial Ecology, 1999, 18 (3): 263-273.
[30]LINCOLN S A, WAI B, EPPLEY J M, et al. Planktonic euryarchaeota are a significant source of archaeal tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111 (27): 9858-63.
[31]LIU H, ZHANG C L, YANG C, et al. Marine Group II dominates planktonic archaea in water column of the Northeastern South China Sea[J]. Frontiers in Microbiology, 2017, 8: 1098.
[32]PERNTHALER A, PRESTON C M, PERNTHALER J, et al. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea[J]. Applied and Environmental Microbiology, 2002, 68 (2): 661-7.
[33]ANNE-CARLIJN A, EVA S, GERHARD J H. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer[J]. Aquatic Microbial Ecology, 2006, 45 (3): 237-246.
[34]ORSI W D, SMITH J M, WILCOX H M, et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter[J]. ISME Journal, 2015, 9 (8): 1747-63.
[35]MASSANA R, DELONG E F, PEDRÓS-ALIÓ C. A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces[J]. Applied and Environmental Microbiology, 2000, 66 (5): 1777.
[36]XIA X, GUO W, LIU H. Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 97-107.
[37]PARADA A E, FUHRMAN J A. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor[J]. ISME Journal, 2017, 11 (11): 2510-2525.
[38]FRIGAARD N U, MARTINEZ A, MINCER T J, et al. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea[J]. Nature, 2006, 439 (7078): 847-50.
[39]DESCHAMPS P, ZIVANOVIC Y, MOREIRA D, et al. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota[J]. Genome Biology and Evolution, 2014, 6 (7): 1549-63.
[40]RINKE C, RUBINO F, MESSER L F, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)[J]. ISME Journal, 2019, 13 (3): 663-675.
[41]TULLY B J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns[J]. Nature Communications, 2019, 10 (1): 271.
[42]IVERSON V, MORRIS R M, FRAZAR C D, et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota[J]. Science, 2012, 335 (6068): 587-90.
[43]ZHANG C L, XIE W, MARTIN-CUADRADO A B, et al. Marine Group II Archaea, potentially important players in the global ocean carbon cycle[J]. Front Microbiol, 2015, 6: 1108.
[44]HERNDL G J, REINTHALER T, TEIRA E, et al. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71 (5): 2303.
[45]BAKER B J, SHEIK C S, TAYLOR C A, et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling[J]. ISME Journal, 2013, 7 (10): 1962-73.
[46]OUVERNEY CLEBER C, FUHRMAN JED A. Marine planktonic archaea take up amino acids[J]. Applied and Environmental Microbiology, 2001, 67 (2): 1023-1023.
[47]DAMASHEK J, OKOTIE-OYEKAN A O, GIFFORD S M, et al. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean[J]. ISME Communications, 2021, 1 (1).
[48]ORELLANA L H, BEN FRANCIS T, KRUGER K, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota[J]. ISME Journal, 2019, 13 (12): 3024-3036.
[49]CHEN S, TAO J, CHEN Y, et al. Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea[J]. Frontiers in Microbiology, 2022, 12: 785532.
[50]GALAND P E, GUTIÉRREZ-PROVECHO C, MASSANA R, et al. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory)[J]. Limnology and Oceanography, 2010, 55 (5): 2117-2125.
[51]MARTIN-CUADRADO A B, GARCIA-HEREDIA I, MOLTÓ A G, et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum[J]. ISME Journal, 2015, 9 (7): 1619-34.
[52]DAI J, YE Q, WU Y, et al. Simulation of enhanced growth of Marine Group II Euryarchaeota from the deep chlorophyll maximum of the western Pacific Ocean: implication for upwelling impact on microbial functions in the photic zone[J]. Frontiers in Microbiology, 2020, 11: 571199.
[53]NEEDHAM D M, FUHRMAN J A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom[J]. Nature Microbiology, 2016, 1: 16005.
[54]ORSI W D, SMITH J M, LIU S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean[J]. ISME Journal, 2016, 10 (9): 2158-73.
[55]PEPERZAK L, COLIJN F, GIESKES W, et al. Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis[J]. Journal of Plankton Research, 1998(3):517-537.
[56]SMITH W, CODISPOTI L, NELSON D, et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J]. Nature, 1991, 352: 514-516.
[57]沈萍萍, 王艳, 齐雨藻, 等.球形棕囊藻的生长特性及生活史研究[J]. 水生生物学报, 2000, 24 (006): 635-643.
[58]ROUSSEAU V, VAULOT D, CASOTTI R, et al. The life cycle of Phaeocystis (Prymnesiophycaea): evidence and hypotheses[J]. Journal of Marine Systems, 1994, 5 (1): 23-39.
[59]ROUSSEAU V, CHRÉTIENNOT-DINET M-J, JACOBSEN A, et al. The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology[J]. Biogeochemistry, 2007, 83 (1): 29-47.
[60]QI Y, CHEN J, WANG Z, et al. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998[J]. Hydrobiologia, 2004, 512 (1): 209-214.
[61]WANG X, SONG H, WANG Y, et al. Research on the biology and ecology of the harmful algal bloom species Phaeocystis globosa in China: Progresses in the last 20 years[J]. Harmful Algae, 2021, 107: 102057.
[62]SCHOEMANN V, BECQUEVORT S, STEFELS J, et al. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review[J]. Journal of Sea Research, 2005, 53 (1): 43-66.
[63]陈菊芳, 徐宁. 中国赤潮新记录种──球形棕囊藻(Phaeocystis globosa)[J]. 暨南大学学报:自然科学与医学版, 1999, 20 (3): 124-129.
[64]徐姗楠, 林华剑, 龚玉艳, 等. 海南西北部近岸海域浮游植物的生态特征[J]. 海洋环境科学, 2015, 34 (5): 9.
[65]曲凌云, 吕颂辉, 高春蕾, 等. 棕囊藻渤海株核糖体18S rDNA和ITS基因结构序列分析[J]. 海洋科学进展, 2008, 26 (2): 200-206.
[66]屠建波, 张秋丰, 徐玉山, 等. 渤海湾天津近岸海域首次棕囊藻赤潮初探[J]. 海洋通报, 2011, 30 (3): 4.
[67]邢前国, 董志军, 王玉珏, 等. 渤海典型生态灾害的发展变化特征及演变趋势[J]. 海岸科学, 2017, 4 (1): 11-18.
[68]徐宁, 齐雨藻, 陈菊芳, 等. 球形棕囊藻(Phaeocystis globosa Scherffel)赤潮成因分析[J]. 环境科学学报, 2003, 23 (1): 6.
[69]刘国强, 史海燕, 魏春雷, 等. 广西涠洲岛海域浮游植物和赤潮生物种类组成的初步研究[J]. 海洋通报, 2008, 27 (003): 43-48.
[70]李亚男, 沈萍萍, 黄良民, 等. 棕囊藻的分类及系统进化研究进展[J]. 生态学杂志, 2012, 31 (3): 10.
[71]ROUSSEAU V, LEYNAERT A, DAOUND N. Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea)[J]. Marine Ecology Progress, 2002, 236: 61-73.
[72]BRETON E, ROUSSEAU, VÉRONIQUE, PARENT J Y, et al. Hydroclimatic modulation of diatom/Phaeocystis blooms in nutrient-enriched Belgian coastal waters (North Sea)[J]. Limnology and Oceanography, 2006, 51 (3): 1401-1409.
[73]CHEN Y Q, WANG N, ZHANG P, et al. Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa[J]. Biochemical Systematics and Ecology, 2002, 30 (1): 15-22.
[74]赵雪, 杨凡, 郭娜, 等. 2007年2月汕头赤潮事件水文气象及海水理化因子影响分析[J]. 海洋预报, 2009, 26 (1): 43-51.
[75]贺成, 宋书群, 李才文. 广西北部湾海域球形棕囊藻囊体时空分布及其影响因素[J]. 海洋与湖沼, 2019, 050 (003): 630-643.
[76]王艳, 齐雨藻, 李韶山. 球形棕囊藻生长的营养需求研究[J]. 水生生物学报, 2007 (01): 24-29.
[77]胡章喜, 邓蕴彦, 唐赢中. 我国北部湾球形棕囊藻(Phaeocystis globosa)的表面形态和细胞超微结构的电镜观察[J]. 海洋与湖沼, 2019, 50 (03): 621-629.
[78]JAHNKE J. The light and temperature dependence of growth rate and elemental composition of Phaeocystis globosa scherffel and P. Pouchetii (HAR.) Lagerh. in batch cultures[J]. Netherlands Journal of Sea Research, 1989, 23 (1): 15-21.
[79]PEPERZAK L, COLIJN F, KOEMAN R, et al. Phytoplankton sinking rates in the Rhine region of freshwater influence[J]. Journal of Plankton Research, 2003, 25 (4): 365-383.
[80]WANG X, TANG K W, WANG Y, et al. Temperature effects on growth, colony development and carbon partitioning in three Phaeocystis species[J]. Aquatic Biology, 2010, 9 (3): 239-249.
[81]XU N, HUANG B, HU Z, et al. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2017, 35 (3): 557-565.
[82]GYPENS N, LACROIX G, LANCELOT C. Causes of variability in diatom and Phaeocystis blooms in Belgian coastal waters between 1989 and 2003: A model study[J]. Journal of Sea Research, 2007, 57 (1): 19-35.
[83]BLAUW A N, LOS F J, HUISMAN J, et al. Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic[J]. Journal of marine systems: journal of the European Association of Marine Sciences and Techniques, 2010, 83 (3/4): 115-126.
[84]王艳, 邓坤, 王小冬. 球形棕囊藻囊体形成中光照、营养盐和共存硅藻的影响[J]. 生态科学, 2013, 32 (02): 165-170.
[85]赵越, 于仁成, 张清春, 等. 北部湾海域微型、微微型浮游植物类群季节变化及其与棕囊藻赤潮的关系初探[J]. 海洋与湖沼, 2019, 50 (3): 590-600.
[86]XU S, WANG X, LIU J, et al. Bacteria associated with Phaeocystis globosa and their influence on colony formation[J]. Frontiers in Microbiology, 2022, 13: 826602.
[87]KOCH H, DURWALD A, SCHWEDER T, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides[J]. ISME Journal, 2019, 13 (1): 92-103.
[88]YU Y, LEE C, KIM J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnology And Bioengineering, 2005, 89 (6): 670-9.
[89]SHERWOOD A R, PRESTING G G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria[J]. Journal of Phycology, 2007, 43 (3): 605-608.
[90]PIRES A C, CLEARY D F, ALMEIDA A, et al. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J]. Applied and Environmental Microbiology, 2012, 78 (16): 5520-8.
[91]KATHLEEN R M. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison[J]. Environmental science & technology, 2010, 44 (24): 9405-12.
[92]KELLOGG C A. Tropical Archaea: diversity associated with the surface microlayer of corals[J]. Marine Ecology Progress, 2004, 273: 81-88.
[93]HOLMES B, BLANCH H. Genus-specific associations of marine sponges with group I crenarchaeotes[J]. Marine Biology, 2006, 150 (5): 759-772.
[94]YIN Q, FU B, LI B, et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre[J]. PLoS One, 2013, 8 (2): e55148.
[95]POSTEC A, QUEMENEUR M, BES M, et al. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period[J]. Frontiers in Microbiology, 2015, 6: 857.
[96]BELMAR L, MOLINA V, ULLOA O. Abundance and phylogenetic identity of archaeoplankton in the permanent oxygen minimum zone of the eastern tropical South Pacific[J]. FEMS Microbiology Ecology, 2011, 78 (2): 314-26.
[97]YOSHIDA-TAKASHIMA Y, NUNOURA T, KAZAMA H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments[J]. Applied and Environmental Microbiology, 2012, 78 (5): 1311-20.
[98]REDMOND M C, VALENTINE D L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill[J]. Proceedings of the National Academy of Sciences, 2012, 109 (50): 20292-7.
[99]SØNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability[J]. Ophelia, 2003, 57 (3): 161-176.
[100]LAPIERRE J F, DEL GIORGIO P A. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks[J]. Biogeosciences, 2014, 11 (20): 5969-5985.
[101]RETELLETTI BROGI S, JUNG J Y, HA S Y, et al. Seasonal differences in dissolved organic matter properties and sources in an Arctic fjord: Implications for future conditions[J]. Science of the Total Environment, 2019, 694: 133740.
[102]STEDMON C A, THOMAS D N, PAPADIMITRIOU S, et al. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines[J]. Journal of Geophysical Research, 2011, 116 (G3).
[103]CATALÁN N, PASTOR A, BORREGO C M, et al. The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters[J]. Limnology and Oceanography, 2020, 66 (2): 306-320.
[104]SHUTOVA Y, BAKER A, BRIDGEMAN J, et al. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths[J]. Water Research, 2014, 54: 159-69.
[105]YAMASHITA Y, KLOEPPEL B D, KNOEPP J, et al. Effects of watershed history on dissolved organic matter characteristics in headwater streams[J]. Ecosystems, 2011, 14 (7): 1110-1122.
[106]YAMASHITA Y, BOYER J N, JAFFÉ R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy[J]. Continental Shelf Research, 2013, 66: 136-144.
[107]WU H, XU X, FU P, et al. Responses of soil WEOM quantity and quality to freeze-thaw and litter manipulation with contrasting soil water content: A laboratory experiment[J]. Catena, 2021, 198.
[108]DERRIEN M, LEE M H, CHOI K, et al. Tracking the evolution of particulate organic matter sources during summer storm events via end-member mixing analysis based on spectroscopic proxies[J]. Chemosphere, 2020, 252: 126445.
[109]D'ANDRILLI J, MCCONNELL J R. Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales[J]. Journal of Glaciology, 2021, 67 (266): 1028-1042.
[110]CHEN M, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean[J]. Science of the Total Environment, 2018, 639: 624-632.
[111]KULKARNI H, MLADENOV N, DATTA S. Effects of acidification on the optical properties of dissolved organic matter from high and low arsenic groundwater and surface water[J]. Science of the Total Environment, 2019, 653: 1326-1332.
[112]CAWLEY K M, DING Y, FOURQUREAN J, et al. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes[J]. Marine and Freshwater Research, 2012, 63 (11).
[113]YU H, LIANG H, QU F, et al. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix[J]. Scientific Reports, 2015, 5: 10207.
[114]SHENG Y, YAN C, NIE M, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112573.
[115]WANG S, PERKINS M, MATTHEWS D A, et al. Coupling suspect and nontarget screening with mass balance modeling to characterize organic micropollutants in the Onondaga Lake-Three Rivers System[J]. Environmental Science & Technology, 2021, 55 (22): 15215-15226.
[116]COHEN E, LEVY G J, BORISOVER M. Fluorescent components of organic matter in wastewater: efficacy and selectivity of the water treatment[J]. Water Research, 2014, 55: 323-34.
[117]VINES M, TERRY L G. Evaluation of the biodegradability of fluorescent dissolved organic matter via biological filtration[J]. AWWA Water Science, 2020, 2 (5).
[118]徐阳, 李朋辉, 张传伦, 等. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学:地球科学, 2021, 51 (01): 63-72.
[119]STUBBINS A, LAPIERRE J F, BERGGREN M, et al. What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada[J]. Environmental Science & Technology, 2014, 48 (18): 10598-10606.
[120]STUBBINS A, SPENCER R G M, CHEN H, et al. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010, 55 (4): 1467-1477.
[121]ROMERA-CASTILLO C, SARMENTO H, ÁLVAREZ-SALGADO X A, et al. Production of chromophoric dissolved organic matter by marine phytoplankton[J]. Limnology and Oceanography, 2010, 55 (3): 446-454.
[122]刘悦, 李丽, 翟晓辉, 等.深圳大鹏湾一次球形棕囊藻藻华的发生过程及成因分析[J]. 热带海洋学报: 1-9.
[123]ROMERO C M, ENGEL R E, D'ANDRILLI J, et al. Compositional tracking of dissolved organic matter in semiarid wheat-based cropping systems using fluorescence EEMs-PARAFAC and absorbance spectroscopy[J]. Journal of Arid Environments, 2019, 167: 34-42.
[124]GUÉGUEN C, CUSS C W, CASSELS C J, et al. Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea[J]. Journal of Geophysical Research: Oceans, 2014, 119 (3): 2034-2047.
[125]JØRGENSEN L, STEDMON C A, KRAGH T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126 (1-4): 139-148.
[126]YAMASHITA Y, KOJIMA D, YOSHIDA N, et al. Relationships between dissolved black carbon and dissolved organic matter in streams[J]. Chemosphere, 2021, 271: 129824.
[127]KATHLEEN R M.Optimized parameters for fluorescence-based verification of ballast water exchange by ships[J]. Environmental science & technology, 2006, 40 (7): 2357-62.
[128]DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41 (4): 659-675.
[129]DETERMANN S, LOBBES J M, REUTER R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria[J]. Marine Chemistry, 1998, 62 (1): 137-156.
[130]URBAN-RICH J, MCCARTY J T, FERNÁNDEZ D, et al. Larvaceans and copepods excrete fluorescent dissolved organic matter (FDOM)[J]. Journal of Experimental Marine Biology and Ecology, 2006, 332 (1): 96-105.
[131]YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82 (3): 255-271.
[132]YAMASHITA Y, TANOUE E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters[J]. Marine Chemistry, 2003, 82 (3): 145-160.
[133]DAVIS J, BENNER R. Quantitative estimates of labile and semi-labile dissolved organic carbon in the western Arctic Ocean: A molecular approach[J]. Limnology and Oceanography, 2007, 52 (6): 2434-2444.
[134]FELLMAN J B, D’AMORE D V, HOOD E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88 (2): 169-184.
[135]BALCARCZYK K L, JONES J B J, JAFFCB R, et al. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost[J]. Biogeochemistry, 2009, 94 (3): 255-270.
[136]CHEN M, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research, 2017, 121: 150-161.
[137]WÜNSCH U J, GEUER J K, LECHTENFELD O J, et al. Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition[J]. Marine Chemistry, 2018, 207: 33-41

所在学位评定分委会
生物系
国内图书分类号
Q938
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335772
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
闫荣曼. 海洋古菌II(MGII)对球形棕囊藻的生态响应[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930322-闫荣曼-海洋科学与工程(10331KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[闫荣曼]的文章
百度学术
百度学术中相似的文章
[闫荣曼]的文章
必应学术
必应学术中相似的文章
[闫荣曼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。