[1]JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8 (8): 593-9.
[2]WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms[J]. Proceedings of the National Academy of Sciences, 1977, 74 (11): 5088.
[3]WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences, 1990, 87 (12): 4576.
[4]SANTORO A E, RICHTER R A, DUPONT C L. Planktonic marine archaea[J]. Annual Review of Marine Science, 2019, 11: 131-158.
[5]FUHRMAN J A, MCCALLUM K, DAVIS A A. Novel major archaebacterial group from marine plankton[J]. Nature, 1992, 356 (6365): 148-149.
[6]DELONG E F. Archaea in coastal marine environments[J]. Proceedings of the National Academy of Sciences, 1992, 89 (12): 5685.
[7]VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304 (5667): 66.
[8]SCHLEPER C, JURGENS G, JONUSCHEIT M. Genomic studies of uncultivated archaea[J]. Nature Reviews Microbiology 2005, 3 (6): 479-88.
[9]KONNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437 (7058): 543-546.
[10]BROCHIER-ARMANET C, BOUSSAU B, GRIBALDO S, et al. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota[J]. Nature Reviews Microbiology, 2008, 6 (3): 245-252.
[11]KARNER M B, DELONG E F, KARL D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409 (6819): 507-510.
[12]FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281 (5374): 237-40.
[13]TANG K, JAKOBSEN H, VISSER A. Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: Feeding, growth, and trophic interactions among grazers[J]. Limnology and oceanography, 2001, 46: 1860-1870.
[14]BAUMANN M E M, LANCELOT C, BRANDINI F P, et al. The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach[J]. Journal of Marine Systems, 1994, 5 (1): 5-22.
[15]XU N, HUANG B, HU Z, et al. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2016, 35 (3): 557-565.
[16]郭皓, 丁德文, 林凤翱, 等. 近20a我国近海赤潮特点与发生规律[J]. 海洋科学进展, 2015, 33 (4): 547-558.
[17]王艳, 齐雨藻, 沈萍萍, 等. 温度和盐度对球形棕囊藻细胞DMSP产量的影响[J]. 水生生物学报, 2003, 027 (004): 367-371.
[18] SMITH W O, CODISPOTI L A, NELSON D M, et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J]. Nature, 1991, 352 (6335): 514-516.
[19]LIU J, YU S, ZHAO M, et al. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary[J]. FEMS Microbiology Ecology, 2014, 90 (2): 424-35.
[20]GALAND P E, LOVEJOY C, POULIOT J, et al. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem[J]. Journal of Marine Systems, 2008, 74 (3-4): 774-782.
[21]WANG Y, PAN J, YANG J, et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China[J]. Limnology and Oceanography, 2020, 65 (S1).
[22]BANO N, RUFFIN S, RANSOM B, et al. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages[J]. Applied and Environmental Microbiology, 2004, 70 (2): 781-9.
[23]DELONG E F, WU K Y, PRÉZELIN B B, et al. High abundance of archaea in Antarctic marine picoplankton[J]. Nature, 1994, 371 (6499): 695-697.
[24]GALAND P E, LOVEJOY C, VINCENT W F. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean[J]. Aquatic Microbial Ecology, 2006, 44: 115-126.
[25]SCHATTENHOFER M, FUCHS B M, AMANN R, et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean[J]. Environmental Microbiology, 2009, 11 (8): 2078-93.
[26]MINCER T J, CHURCH M J, TAYLOR L T, et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre[J]. Environmental Microbiology, 2007, 9 (5): 1162-75.
[27]DELONG E F, PRESTON C M, MINCER T, et al. Community genomics among stratified microbial assemblages in the ocean's interior[J]. Science, 2006, 311 (5760): 496-503.
[28]MASSANA R, TAYLOR L T, MURRAY A E, et al. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring[J]. Limnology and Oceanography, 1998, 43 (4): 607-617.
[29]ALISON E M, KE YING W, CRAIG L M, et al. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean[J]. Aquatic Microbial Ecology, 1999, 18 (3): 263-273.
[30]LINCOLN S A, WAI B, EPPLEY J M, et al. Planktonic euryarchaeota are a significant source of archaeal tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111 (27): 9858-63.
[31]LIU H, ZHANG C L, YANG C, et al. Marine Group II dominates planktonic archaea in water column of the Northeastern South China Sea[J]. Frontiers in Microbiology, 2017, 8: 1098.
[32]PERNTHALER A, PRESTON C M, PERNTHALER J, et al. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea[J]. Applied and Environmental Microbiology, 2002, 68 (2): 661-7.
[33]ANNE-CARLIJN A, EVA S, GERHARD J H. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer[J]. Aquatic Microbial Ecology, 2006, 45 (3): 237-246.
[34]ORSI W D, SMITH J M, WILCOX H M, et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter[J]. ISME Journal, 2015, 9 (8): 1747-63.
[35]MASSANA R, DELONG E F, PEDRÓS-ALIÓ C. A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces[J]. Applied and Environmental Microbiology, 2000, 66 (5): 1777.
[36]XIA X, GUO W, LIU H. Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 97-107.
[37]PARADA A E, FUHRMAN J A. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor[J]. ISME Journal, 2017, 11 (11): 2510-2525.
[38]FRIGAARD N U, MARTINEZ A, MINCER T J, et al. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea[J]. Nature, 2006, 439 (7078): 847-50.
[39]DESCHAMPS P, ZIVANOVIC Y, MOREIRA D, et al. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota[J]. Genome Biology and Evolution, 2014, 6 (7): 1549-63.
[40]RINKE C, RUBINO F, MESSER L F, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)[J]. ISME Journal, 2019, 13 (3): 663-675.
[41]TULLY B J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns[J]. Nature Communications, 2019, 10 (1): 271.
[42]IVERSON V, MORRIS R M, FRAZAR C D, et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota[J]. Science, 2012, 335 (6068): 587-90.
[43]ZHANG C L, XIE W, MARTIN-CUADRADO A B, et al. Marine Group II Archaea, potentially important players in the global ocean carbon cycle[J]. Front Microbiol, 2015, 6: 1108.
[44]HERNDL G J, REINTHALER T, TEIRA E, et al. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71 (5): 2303.
[45]BAKER B J, SHEIK C S, TAYLOR C A, et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling[J]. ISME Journal, 2013, 7 (10): 1962-73.
[46]OUVERNEY CLEBER C, FUHRMAN JED A. Marine planktonic archaea take up amino acids[J]. Applied and Environmental Microbiology, 2001, 67 (2): 1023-1023.
[47]DAMASHEK J, OKOTIE-OYEKAN A O, GIFFORD S M, et al. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean[J]. ISME Communications, 2021, 1 (1).
[48]ORELLANA L H, BEN FRANCIS T, KRUGER K, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota[J]. ISME Journal, 2019, 13 (12): 3024-3036.
[49]CHEN S, TAO J, CHEN Y, et al. Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea[J]. Frontiers in Microbiology, 2022, 12: 785532.
[50]GALAND P E, GUTIÉRREZ-PROVECHO C, MASSANA R, et al. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory)[J]. Limnology and Oceanography, 2010, 55 (5): 2117-2125.
[51]MARTIN-CUADRADO A B, GARCIA-HEREDIA I, MOLTÓ A G, et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum[J]. ISME Journal, 2015, 9 (7): 1619-34.
[52]DAI J, YE Q, WU Y, et al. Simulation of enhanced growth of Marine Group II Euryarchaeota from the deep chlorophyll maximum of the western Pacific Ocean: implication for upwelling impact on microbial functions in the photic zone[J]. Frontiers in Microbiology, 2020, 11: 571199.
[53]NEEDHAM D M, FUHRMAN J A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom[J]. Nature Microbiology, 2016, 1: 16005.
[54]ORSI W D, SMITH J M, LIU S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean[J]. ISME Journal, 2016, 10 (9): 2158-73.
[55]PEPERZAK L, COLIJN F, GIESKES W, et al. Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis[J]. Journal of Plankton Research, 1998(3):517-537.
[56]SMITH W, CODISPOTI L, NELSON D, et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J]. Nature, 1991, 352: 514-516.
[57]沈萍萍, 王艳, 齐雨藻, 等.球形棕囊藻的生长特性及生活史研究[J]. 水生生物学报, 2000, 24 (006): 635-643.
[58]ROUSSEAU V, VAULOT D, CASOTTI R, et al. The life cycle of Phaeocystis (Prymnesiophycaea): evidence and hypotheses[J]. Journal of Marine Systems, 1994, 5 (1): 23-39.
[59]ROUSSEAU V, CHRÉTIENNOT-DINET M-J, JACOBSEN A, et al. The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology[J]. Biogeochemistry, 2007, 83 (1): 29-47.
[60]QI Y, CHEN J, WANG Z, et al. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998[J]. Hydrobiologia, 2004, 512 (1): 209-214.
[61]WANG X, SONG H, WANG Y, et al. Research on the biology and ecology of the harmful algal bloom species Phaeocystis globosa in China: Progresses in the last 20 years[J]. Harmful Algae, 2021, 107: 102057.
[62]SCHOEMANN V, BECQUEVORT S, STEFELS J, et al. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review[J]. Journal of Sea Research, 2005, 53 (1): 43-66.
[63]陈菊芳, 徐宁. 中国赤潮新记录种──球形棕囊藻(Phaeocystis globosa)[J]. 暨南大学学报:自然科学与医学版, 1999, 20 (3): 124-129.
[64]徐姗楠, 林华剑, 龚玉艳, 等. 海南西北部近岸海域浮游植物的生态特征[J]. 海洋环境科学, 2015, 34 (5): 9.
[65]曲凌云, 吕颂辉, 高春蕾, 等. 棕囊藻渤海株核糖体18S rDNA和ITS基因结构序列分析[J]. 海洋科学进展, 2008, 26 (2): 200-206.
[66]屠建波, 张秋丰, 徐玉山, 等. 渤海湾天津近岸海域首次棕囊藻赤潮初探[J]. 海洋通报, 2011, 30 (3): 4.
[67]邢前国, 董志军, 王玉珏, 等. 渤海典型生态灾害的发展变化特征及演变趋势[J]. 海岸科学, 2017, 4 (1): 11-18.
[68]徐宁, 齐雨藻, 陈菊芳, 等. 球形棕囊藻(Phaeocystis globosa Scherffel)赤潮成因分析[J]. 环境科学学报, 2003, 23 (1): 6.
[69]刘国强, 史海燕, 魏春雷, 等. 广西涠洲岛海域浮游植物和赤潮生物种类组成的初步研究[J]. 海洋通报, 2008, 27 (003): 43-48.
[70]李亚男, 沈萍萍, 黄良民, 等. 棕囊藻的分类及系统进化研究进展[J]. 生态学杂志, 2012, 31 (3): 10.
[71]ROUSSEAU V, LEYNAERT A, DAOUND N. Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea)[J]. Marine Ecology Progress, 2002, 236: 61-73.
[72]BRETON E, ROUSSEAU, VÉRONIQUE, PARENT J Y, et al. Hydroclimatic modulation of diatom/Phaeocystis blooms in nutrient-enriched Belgian coastal waters (North Sea)[J]. Limnology and Oceanography, 2006, 51 (3): 1401-1409.
[73]CHEN Y Q, WANG N, ZHANG P, et al. Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa[J]. Biochemical Systematics and Ecology, 2002, 30 (1): 15-22.
[74]赵雪, 杨凡, 郭娜, 等. 2007年2月汕头赤潮事件水文气象及海水理化因子影响分析[J]. 海洋预报, 2009, 26 (1): 43-51.
[75]贺成, 宋书群, 李才文. 广西北部湾海域球形棕囊藻囊体时空分布及其影响因素[J]. 海洋与湖沼, 2019, 050 (003): 630-643.
[76]王艳, 齐雨藻, 李韶山. 球形棕囊藻生长的营养需求研究[J]. 水生生物学报, 2007 (01): 24-29.
[77]胡章喜, 邓蕴彦, 唐赢中. 我国北部湾球形棕囊藻(Phaeocystis globosa)的表面形态和细胞超微结构的电镜观察[J]. 海洋与湖沼, 2019, 50 (03): 621-629.
[78]JAHNKE J. The light and temperature dependence of growth rate and elemental composition of Phaeocystis globosa scherffel and P. Pouchetii (HAR.) Lagerh. in batch cultures[J]. Netherlands Journal of Sea Research, 1989, 23 (1): 15-21.
[79]PEPERZAK L, COLIJN F, KOEMAN R, et al. Phytoplankton sinking rates in the Rhine region of freshwater influence[J]. Journal of Plankton Research, 2003, 25 (4): 365-383.
[80]WANG X, TANG K W, WANG Y, et al. Temperature effects on growth, colony development and carbon partitioning in three Phaeocystis species[J]. Aquatic Biology, 2010, 9 (3): 239-249.
[81]XU N, HUANG B, HU Z, et al. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2017, 35 (3): 557-565.
[82]GYPENS N, LACROIX G, LANCELOT C. Causes of variability in diatom and Phaeocystis blooms in Belgian coastal waters between 1989 and 2003: A model study[J]. Journal of Sea Research, 2007, 57 (1): 19-35.
[83]BLAUW A N, LOS F J, HUISMAN J, et al. Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic[J]. Journal of marine systems: journal of the European Association of Marine Sciences and Techniques, 2010, 83 (3/4): 115-126.
[84]王艳, 邓坤, 王小冬. 球形棕囊藻囊体形成中光照、营养盐和共存硅藻的影响[J]. 生态科学, 2013, 32 (02): 165-170.
[85]赵越, 于仁成, 张清春, 等. 北部湾海域微型、微微型浮游植物类群季节变化及其与棕囊藻赤潮的关系初探[J]. 海洋与湖沼, 2019, 50 (3): 590-600.
[86]XU S, WANG X, LIU J, et al. Bacteria associated with Phaeocystis globosa and their influence on colony formation[J]. Frontiers in Microbiology, 2022, 13: 826602.
[87]KOCH H, DURWALD A, SCHWEDER T, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides[J]. ISME Journal, 2019, 13 (1): 92-103.
[88]YU Y, LEE C, KIM J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnology And Bioengineering, 2005, 89 (6): 670-9.
[89]SHERWOOD A R, PRESTING G G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria[J]. Journal of Phycology, 2007, 43 (3): 605-608.
[90]PIRES A C, CLEARY D F, ALMEIDA A, et al. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J]. Applied and Environmental Microbiology, 2012, 78 (16): 5520-8.
[91]KATHLEEN R M. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison[J]. Environmental science & technology, 2010, 44 (24): 9405-12.
[92]KELLOGG C A. Tropical Archaea: diversity associated with the surface microlayer of corals[J]. Marine Ecology Progress, 2004, 273: 81-88.
[93]HOLMES B, BLANCH H. Genus-specific associations of marine sponges with group I crenarchaeotes[J]. Marine Biology, 2006, 150 (5): 759-772.
[94]YIN Q, FU B, LI B, et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre[J]. PLoS One, 2013, 8 (2): e55148.
[95]POSTEC A, QUEMENEUR M, BES M, et al. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period[J]. Frontiers in Microbiology, 2015, 6: 857.
[96]BELMAR L, MOLINA V, ULLOA O. Abundance and phylogenetic identity of archaeoplankton in the permanent oxygen minimum zone of the eastern tropical South Pacific[J]. FEMS Microbiology Ecology, 2011, 78 (2): 314-26.
[97]YOSHIDA-TAKASHIMA Y, NUNOURA T, KAZAMA H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments[J]. Applied and Environmental Microbiology, 2012, 78 (5): 1311-20.
[98]REDMOND M C, VALENTINE D L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill[J]. Proceedings of the National Academy of Sciences, 2012, 109 (50): 20292-7.
[99]SØNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability[J]. Ophelia, 2003, 57 (3): 161-176.
[100]LAPIERRE J F, DEL GIORGIO P A. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks[J]. Biogeosciences, 2014, 11 (20): 5969-5985.
[101]RETELLETTI BROGI S, JUNG J Y, HA S Y, et al. Seasonal differences in dissolved organic matter properties and sources in an Arctic fjord: Implications for future conditions[J]. Science of the Total Environment, 2019, 694: 133740.
[102]STEDMON C A, THOMAS D N, PAPADIMITRIOU S, et al. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines[J]. Journal of Geophysical Research, 2011, 116 (G3).
[103]CATALÁN N, PASTOR A, BORREGO C M, et al. The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters[J]. Limnology and Oceanography, 2020, 66 (2): 306-320.
[104]SHUTOVA Y, BAKER A, BRIDGEMAN J, et al. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths[J]. Water Research, 2014, 54: 159-69.
[105]YAMASHITA Y, KLOEPPEL B D, KNOEPP J, et al. Effects of watershed history on dissolved organic matter characteristics in headwater streams[J]. Ecosystems, 2011, 14 (7): 1110-1122.
[106]YAMASHITA Y, BOYER J N, JAFFÉ R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy[J]. Continental Shelf Research, 2013, 66: 136-144.
[107]WU H, XU X, FU P, et al. Responses of soil WEOM quantity and quality to freeze-thaw and litter manipulation with contrasting soil water content: A laboratory experiment[J]. Catena, 2021, 198.
[108]DERRIEN M, LEE M H, CHOI K, et al. Tracking the evolution of particulate organic matter sources during summer storm events via end-member mixing analysis based on spectroscopic proxies[J]. Chemosphere, 2020, 252: 126445.
[109]D'ANDRILLI J, MCCONNELL J R. Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales[J]. Journal of Glaciology, 2021, 67 (266): 1028-1042.
[110]CHEN M, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean[J]. Science of the Total Environment, 2018, 639: 624-632.
[111]KULKARNI H, MLADENOV N, DATTA S. Effects of acidification on the optical properties of dissolved organic matter from high and low arsenic groundwater and surface water[J]. Science of the Total Environment, 2019, 653: 1326-1332.
[112]CAWLEY K M, DING Y, FOURQUREAN J, et al. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes[J]. Marine and Freshwater Research, 2012, 63 (11).
[113]YU H, LIANG H, QU F, et al. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix[J]. Scientific Reports, 2015, 5: 10207.
[114]SHENG Y, YAN C, NIE M, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112573.
[115]WANG S, PERKINS M, MATTHEWS D A, et al. Coupling suspect and nontarget screening with mass balance modeling to characterize organic micropollutants in the Onondaga Lake-Three Rivers System[J]. Environmental Science & Technology, 2021, 55 (22): 15215-15226.
[116]COHEN E, LEVY G J, BORISOVER M. Fluorescent components of organic matter in wastewater: efficacy and selectivity of the water treatment[J]. Water Research, 2014, 55: 323-34.
[117]VINES M, TERRY L G. Evaluation of the biodegradability of fluorescent dissolved organic matter via biological filtration[J]. AWWA Water Science, 2020, 2 (5).
[118]徐阳, 李朋辉, 张传伦, 等. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学:地球科学, 2021, 51 (01): 63-72.
[119]STUBBINS A, LAPIERRE J F, BERGGREN M, et al. What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada[J]. Environmental Science & Technology, 2014, 48 (18): 10598-10606.
[120]STUBBINS A, SPENCER R G M, CHEN H, et al. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010, 55 (4): 1467-1477.
[121]ROMERA-CASTILLO C, SARMENTO H, ÁLVAREZ-SALGADO X A, et al. Production of chromophoric dissolved organic matter by marine phytoplankton[J]. Limnology and Oceanography, 2010, 55 (3): 446-454.
[122]刘悦, 李丽, 翟晓辉, 等.深圳大鹏湾一次球形棕囊藻藻华的发生过程及成因分析[J]. 热带海洋学报: 1-9.
[123]ROMERO C M, ENGEL R E, D'ANDRILLI J, et al. Compositional tracking of dissolved organic matter in semiarid wheat-based cropping systems using fluorescence EEMs-PARAFAC and absorbance spectroscopy[J]. Journal of Arid Environments, 2019, 167: 34-42.
[124]GUÉGUEN C, CUSS C W, CASSELS C J, et al. Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea[J]. Journal of Geophysical Research: Oceans, 2014, 119 (3): 2034-2047.
[125]JØRGENSEN L, STEDMON C A, KRAGH T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126 (1-4): 139-148.
[126]YAMASHITA Y, KOJIMA D, YOSHIDA N, et al. Relationships between dissolved black carbon and dissolved organic matter in streams[J]. Chemosphere, 2021, 271: 129824.
[127]KATHLEEN R M.Optimized parameters for fluorescence-based verification of ballast water exchange by ships[J]. Environmental science & technology, 2006, 40 (7): 2357-62.
[128]DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41 (4): 659-675.
[129]DETERMANN S, LOBBES J M, REUTER R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria[J]. Marine Chemistry, 1998, 62 (1): 137-156.
[130]URBAN-RICH J, MCCARTY J T, FERNÁNDEZ D, et al. Larvaceans and copepods excrete fluorescent dissolved organic matter (FDOM)[J]. Journal of Experimental Marine Biology and Ecology, 2006, 332 (1): 96-105.
[131]YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82 (3): 255-271.
[132]YAMASHITA Y, TANOUE E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters[J]. Marine Chemistry, 2003, 82 (3): 145-160.
[133]DAVIS J, BENNER R. Quantitative estimates of labile and semi-labile dissolved organic carbon in the western Arctic Ocean: A molecular approach[J]. Limnology and Oceanography, 2007, 52 (6): 2434-2444.
[134]FELLMAN J B, D’AMORE D V, HOOD E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88 (2): 169-184.
[135]BALCARCZYK K L, JONES J B J, JAFFCB R, et al. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost[J]. Biogeochemistry, 2009, 94 (3): 255-270.
[136]CHEN M, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research, 2017, 121: 150-161.
[137]WÜNSCH U J, GEUER J K, LECHTENFELD O J, et al. Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition[J]. Marine Chemistry, 2018, 207: 33-41
修改评论