[1] SARAN R, CURRY R J. Lead sulphide nanocrystal photodetector technologies[J]. Nature Photonics, 2016, 10(2):81-92.
[2] CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications[J]. Nano Today, 2015, 10(3):355-396.
[3] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced Materials, 2013, 25(31):4267-4295.
[4] Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors[J]. Journal of Materials Chemistry C, 2019,7(7):1741-1791
[5] LI Q Y, GUO Y L, LIU Y Q. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 2019, 31(17):6359-6379.
[6] DOWNS C, VANDERVELDE T E. Progress in infrared photodetectors since 2000[J]. Sensors, 2013, 13(4):5054-5098.
[7] RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10):7433-7473.
[8] SANG L, LIAO M, SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8):10482-10518.
[9] SUN W, DU Q. Hyperspectral band selection: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):118-139.
[10] CHOW P C Y, SOMEYA T. Organic photodetectors for next-generation wearable electronics[J]. Advanced Materials, 2020, 32(15):7634234.
[11] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970.
[12] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-super structured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
[13] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2):133-138.
[14] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326):722-726.
[15] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for alpha-FAPbBr3 perovskite solar cells[J]. Nature, 2021, 592(7854):381-385.
[16] DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5:5404.
[17] HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 2021, 591(7848):72-77.
[18] KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes[J]. Nature Photonics, 2021, 15(2):148-155.
[19] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.
[20] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organ lead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519-522.
[21] MORKOC H, STRITE S, GAO G B, et al. Large-band-gap sic, III-V nitride, and II-VI ZnSe-based semiconductor-device technologies[J]. Journal of Applied Physics, 1994, 76(3):1363-1398.
[22] SPEIRS M J, DIRIN D N, ABDU-AGUYE M, et al. Temperature dependent behavior of lead sulfide quantum dot solar cells and films[J]. Energy & Environmental Science, 2016, 9(9):2916-2924.
[23] WANG K, WU C C, HOU Y C, et al. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications[J]. Journal of Materials Chemistry A, 2019, 7(43):24661-24690.
[24] DANDIN M, ABSHIRE P, SMELA E. Optical filtering technologies for integrated fluorescence sensors[J]. Lab on a Chip, 2007, 7(8):955-977.
[25] DE IACOVO A, VENETTACCI C, GIANSANTE C, et al. Narrow band colloidal quantum dot photodetectors for wavelength measurement applications[J]. Nanoscale, 2020, 12(18):10044-10050.
[26] DAI Q, XU K, PENG Y, et al. Towards high performance visible-blind narrow band near-infrared photodetectors with integrated perovskite light filter[J]. Infrared Physics & Technology, 2020,108: 103358.
[27] LI L, JIN L, ZHOU Y, et al. Filterless polarization-sensitive 2D perovskite narrow band photodetectors[J]. Advanced Optical Materials, 2019, 7(23):1900988.
[28] HARRISON M, GRüNER J, SPENCER G. Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes[J]. Physics Review B, 1997, 55(12):7831-7849.
[29] FANG Y, DONG Q, SHAO Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10):679-686.
[30] RAO H S, LI W G, CHEN B X, et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors[J]. Advanced Materials, 2017, 29(16):1602639.
[31] SAIDAMINOV M I, HAQUE M A, SAVOIE M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 2016, 28(37):8144-8149.
[32] ZHOU J, LUO J, RONG X, et al. Lead-free perovskite derivative Cs2SnCl6-xBrx single crystals for narrowband photodetectors[J]. Advanced Optical Materials, 2019, 7(10):1900139.
[33] LI L L, DENG Y H, BAO C X, et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response[J]. Advanced Optical Materials, 2017, 5(22):1700672.
[34] WANG J, XIAO S, QIAN W, et al. Self-driven perovskite narrowband photodetectors with tunable spectral responses[J]. Advanced Materials, 2021, 33(3):2005557.
[35] KALCHMAIR S, DETZ H, COLE G, et al. Photonic crystal slab quantum well infrared photodetector[J]. Applied Physics Letters, 2011, 98(1):011105.
[36] SOBHANI A, KNIGHT M W, WANG Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4(1):1643.
[37] CAO F, CHEN J, YU D, et al. Bionic detectors based on low‐bandgap inorganic perovskite for selective NIR‐i photon detection and imaging[J]. Advanced Materials, 2020, 32(6):1905362.
[38] CHEN M, LU L, YU H, et al. Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices[J]. Advanced Science, 2021, 8(18):2101560.
[39] BAO C, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications[J]. Advanced Materials, 2018, 30(38):1806522.
[40] SAIDAMINOV M I, ADINOLFI V, COMIN R, et al. Planar-integrated single-crystalline perovskite photodetectors[J]. Nature Communications, 2015, 6(1):8724.
[41] LI W G, RAO H S, CHEN B X, et al. A formamidinium-methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability[J]. Journal of Materials Chemistry A, 2017, 5(36):19431-19438.
[42] BAO C X, CHEN Z L, FANG Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 2017, 29(39):1703209.
[43] YANG Z, XU Q, WANG X D, et al. Large and ultra stable all-inorganic CsPbBr3 monocrystalline films: low-temperature growth and application for high-performance photodetectors[J]. Advanced Materials, 2018, 30(44):1802110.
[44] YAO M, JIANG J, XIN D, et al. High-temperature stable FAPbBr3 single crystals for. sensitive X-ray and visible light detection toward space[J]. Nano Letters, 2021, 21(9):3947-3955.
[45] PECUNIA V. Efficiency and spectral performance of narrowband organic and perovskite photodetectors: a cross-sectional review[J]. Journal of Physics: Materials, 2019, 2(4):042001.
[46] WANG Y, KUBLITSKI J, XING S, et al. Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing[J]. Materials Horizons, 2021, 9:220-251.
[47] WANG F, ZOU X, XU M, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors[J]. Advanced Science, 2021, 8(14):2100569.
[48] LIU X D, LIN Y W, LIAO Y J, et al. Recent advances in organic near-infrared photodiodes[J]. Journal of Materials Chemistry C, 2018, 6(14):3499-3513.
[49] TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48):1803158.
[50] JAGTAP A, MARTINEZ B, GOUBET N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11):4569-4576.
[51] KLEM E, LEWIS J, GREGORY C, et al. High-performance SWIR sensing from colloidal quantum dot photodiode arrays[C/OL]//LEVAN P D, SOOD A K, WIJEWARNASURIYA P S, et al. Proceeding of SPIE Optical Engineering + Applications, September 19, 2013. San Diego: SPIE, 2013: 8868: 886806
[2022-03-15]
[52] ZHENG L, ZHOU W J, NING Z J, et al. Ambipolar graphene-quantum dot phototransistors with CMOS compatibility[J]. Advanced Optical Materials, 2018, 6(23):1800985.
[53] SONG X X, ZHANG Y T, WANG R, et al. Bulk- and layer-heterojunction phototransistors based on poly 2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene) and PbS quantum dot hybrids[J]. Applied Physics Letters, 2015, 106(25):253501.
[54] ZHANG Y T, SONG X X, WANG R, et al. Comparison of photo response of transistors based on graphene-quantum dot hybrids with layered and bulk heterojunctions[J]. Nanotechnology, 2015, 26(33):335201.
[55] HUISMAN E H, SHULGA A G, ZOMER P J, et al. High gain hybrid graphene-organic semiconductor phototransistors[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11083-11088.
[56] WANG H, KIM D H. Perovskite-based photodetectors: materials and devices[J]. Chemical Society Reviews, 2017, 46(17):5204-5236.
[57] RYCROFT M. Computational electrodynamics, the finite-difference time-domain method[J]. Journal of Atmospheric and Terrestrial Physics, 1996, 15(58):1817-1818.
[58] SUN S, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12):6223-6229.
[59] BHATTACHARYYA S R, GAYEN R N, PAUL R, et al. Determination of optical constants of thin films from transmittance trace[J]. Thin Solid Films, 2009, 517(18):5530-5536.
[60] Refractive index database[DB/OL]. POLYANSKIY M N, 2022
[2022/02/22]. https://refractiveindex.info.
[61] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9):897-903.
[62] KANG R, YEO J S, LEE H J, et al. Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells[J]. Nano Energy, 2016, 27:175-184.
[63] WU D, LI W H, LIU H C, et al. Universal strategy for improving perovskite photodiode performance: interfacial built-in electric field manipulated by unintentional doping[J]. Advanced Science, 2021, 8(18):2101729.
[64] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221):522-525.
[65] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6(1):1-6.
[66] WANG K, YANG D, WU C, et al. Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency[J]. Joule, 2019, 3(2):311-316.
[67] PENG W, WANG L, MURALI B, et al. Solution-grown monocrystalline hybrid perovskite films for hole‐transporter‐free solar cells[J]. Advanced Materials, 2016 28(17):3383-3390.
[68] CHEN Y X, GE Q Q, SHI Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J]. Journal of the American Chemical Society, 2016, 138(50):16196-16199.
[69] CORREA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364):739-744.
[70] COHEN E, LIGHTFOOT E. Coating processes[J]. Kirk-Othmer Encyclopedia of Chemical Technology, 2000:1-68.
[71] MATTOX D M. The foundations of vacuum coating technology[M]. New York: William Andrew Publishing, 2003.
[72] PAZOKI M, HAGFELDT A, EDVINSSON T. Characterization techniques for perovskite solar cell materials[M]. Amsterdam: Elsevier, 2020.
[73] ALIOFKHAZRAEI M, ALI N, CHIPARA M, et al. Handbook of modern coating technologies[M]. Amsterdam: Elsevier, 2021.
[74] WARNER J H, THOMSEN E, WATT A R, et al. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals[J]. Nanotechnology, 2004, 16(2):175-179.
[75] HALL J L, HAWES C. Electron microscopy of plant cells[M]. Cambrige: Academic Press, 1991.
[76] SINGH M K, SINGH A. Characterization of polymers and fibres[M]. Sawston: Woodhead Publishing, 2022.
[77] WALECKI W J, SZONDY F, HILALI M M. Fast in-line surface topography metrology enabling stress calculation for solar cell manufacturing for throughput in excess of 2000 wafers per hour[J]. Measurement Science and Technology, 2008, 19(2):025302.
[78] BROWN S. Theory and simulation of subwavelength high contrast gratings and their applications in vertical-cavity surface-emitting laser devices[D]. Urbana: University of Illinois, 2011.
[79] SANG T, WANG L, JI S, et al. Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane[J]. Journal of the Optical Society of America A, 2009, 26(3):559-565.
[80] POPOV E, MASHEV L, MAYSTRE D. Theoretical study of the anomalies of coated dielectric gratings[J]. Optica Acta: International Journal of Optics, 1986, 33(5):607-619.
[81] MAGNUSSON R, WANG S. New principle for optical filters[J]. Applied Physics Letters, 1992, 61(9):1022-1024.
[82] GOLUBENKO G, SVAKHIN A S, SYCHUGOV V A, et al. Total reflection of light from a corrugated surface of a dielectric waveguide[J]. Soviet Journal of Quantum Electronics, 1985, 15(7):886-887.
[83] XIONGGUI T, CHUNLEI D. Analysis of nonpolarizing narrow-band filters based on resonant anomaly[J]. Acta Optica Sinica, 2004, 24:668-672.
[84] GIESE J A, YOON J W, WENNER B R, et al. Guided-mode resonant coherent light absorbers[J]. Optics Letters, 2014, 39(3):486-488.
[85] RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408):8235.
[86] PARK N-G, GRäTZEL M, MIYASAKA T, et al. Towards stable and commercially available perovskite solar cells[J]. Nature Energy, 2016, 1(11):16152.
[87] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221):522-525.
[88] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6(1):7586.
[89] LIU Y, ZHANG Y, YANG Z, et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors[J]. Materials Today, 2019, 22:67-75.
[90] LIU Y, ZHANG Y, YANG Z, et al. Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41):9204.
[91] MARKOV I V. Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy[M]. Singapore: World Scientific, 1995.
[92] TILLER W A. The science of crystallization: microscopic interfacial phenomena[M]. Cambridge: Cambridge University Press, 1991.
[93] YAO F, PENG J, LI R, et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals[J]. Nature Communications, 2020, 11(1):1194.
[94] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519.
[95] LIU Y, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X= Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35):5176-5183.
[96] LIU Y, SUN J, YANG Z, et al. 20-mm-Large single-crystalline formamidinium‐perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11):1829-1837.
[97] RAO H S, CHEN B X, WANG X D, et al. A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell[J]. Chemical Communications, 2017, 53(37):5163-5166.
[98] YANG Z, DENG Y, ZHANG X, et al. High‐performance single‐crystalline perovskite thin‐film photodetector[J]. Advanced Materials, 2018, 30(8):1704333.
[99] PENG W, WANG L, MURALI B, et al. Solution‐grown monocrystalline hybrid perovskite films for hole‐transporter‐free solar cells[J]. Advanced Materials, 2016, 28(17):3383.
[100] CHEN W, TANG H, CHEN Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors[J]. Nano Energy, 2020, 78:105254.
[101] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948):1665-1667.
[102] REN Z, SUN J, LI H, et al. Bilayer PbS quantum dots for high‐performance photodetectors[J]. Advanced Materials, 2017, 29(33):1702055.
[103] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced Materials, 2013, 25(31):4267-4295.
[104] WANG Q, ZHANG G, ZHANG H, et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic‐liquid‐based ink[J]. Advanced Functional Materials, 2021, 31(28):2100857.
[105] DING J, DU S, ZUO Z, et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector[J]. The Journal of Physical Chemistry C, 2017, 121(9):4917-4923.
[106] SONG Q, WANG Y, VOGELBACHER F, et al. Moiré perovskite photodetector toward high‐sensitive digital polarization imaging[J]. Advanced Energy Materials, 2021, 11(29):2100742.
[107] Wang F, Zou X, Xu M, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors[J]. Advanced Science, 2021, 8(14):2100569.
[108] Fang Y, Armin A, Meredith P, et al. Accurate characterization of next-generation thin-film photodetectors[J]. Nature Photonics, 2019, 13(1):1-4.
[109] SHAIKH P A, SHI D, RETAMAL J R D, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection[J]. Journal of Materials Chemistry C, 2016, 4(35):8304-8312.
[110] WANG Q, BAI D, JIN Z, et al. Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment[J]. RSC Advances, 2018, 8(27):14848-14853.
[111] FU X, DONG N, LIAN G, et al. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors[J]. Nano Letters, 2018, 18(2):1213-1220.
[112] ZENG J, LI X, WU Y, et al. Space‐confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit[J]. Advanced Functional Materials, 2018, 28(43):1804394.
[113] GAO J, LIANG Q, LI G, et al. Single-crystalline lead halide perovskite wafers for high performance photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(27):8357-8363.
[114] HE X, WANG Y, LI K, et al. Oriented growth of ultrathin single crystals of 2D Ruddlesden-Popper hybrid lead iodide perovskites for high-performance photodetectors[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15905-15912.
[115] GUI P, ZHOU H, YAO F, et al. Space‐confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near‐ultraviolet photodetection[J]. Small, 2019, 15(39):1902618.
[116] LIU R, ZHOU H, SONG Z, et al. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors[J]. Nanoscale, 2019, 11(19):9302-9309.
[117] LI W G, WANG X D, LIAO J F, et al. A laminar MAPbBr3/MAPbBr3-xIx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance[J]. Journal of Materials Chemistry C, 2019, 7(19):5670-5676.
[118] BAI Y, ZHANG H, ZHANG M, et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X= Cl, Br, I)[J]. Nanoscale, 2020, 12(2):1100-1108.
[119] LI C, LU J, ZHAO Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system[J]. Small, 2019, 15(44):1903599.
修改评论