中文版 | English
题名

RESEARCH ON NARROWBAND AND HIGH RESPONSE SPEED ORGANIC-INORGANIC HYBRID PEROVSKITE PHOTODETECTORS

其他题名
窄带快响应有机-无机杂化钙钛矿光电探测器研究
姓名
姓名拼音
LIU Chenxi
学号
11930533
学位类型
硕士
学位专业
080901 物理电子学
学科门类/专业学位类别
08 工学
导师
王恺
导师单位
电子与电气工程系
论文答辩日期
2022-05-12
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Photodetectors which convert light signal into electrical signal play an important role in scientific research, imaging, automated production, military defense and other fields. In recent years, perovskite material has opened up a new and energetic route for photodetectors due to their excellent optoelectronic properties such as direct band gap, large absorption coefficient and long exciton diffusion length. Narrowband photodetectors can be used in machine vision, multispectral detection and intelligent identification and have great potential for future industrial production. In addition, photodetectors with high response speed also have a wide range of applications in the fields of communication and sensing. Aiming at the demand of realizing narrowband and high response speed perovskite photodetectors, the specific work done in this thesis is as follows:

To achieve narrowband detection of the perovskite photodetectors, sub-wavelength gratings were introduced in this thesis to modulate the optical field and suppress the transmission and reflection of light of specific wavelengths, thereby realizing the narrowband absorption enhancement. The device was modelled using a finite-difference time-domain method. Through the design of sub-wavelength grating structures based on the guided-mode resonance, the optical distribution and reflectance/transmittance/absorption spectra of the photodetectors were simulated and studied. The mechanism of light regulation by subwavelength gratings was analyzed, and the influence of sub-wavelength grating-perovskite structures with different parameters on the absorption spectrum is explored. Compared with the device with a planar substrate, the absorption of the perovskite material at 780 nm increases by 132% (from 0.41 to 0.95) with a narrow full width at half maximum of 20 nm by using an optimized sub-wavelength grating with a depth of 290 nm, a period of 510 nm, and a fill factor of 0.39 as the substrate. This illustrates that sub-wavelength gratings show good application prospects in perovskite narrowband detection.

To achieve photodetectors with high response speed, the perovskite monocrystalline thin films with low trap density combined with the device architect of photodiodes were adopted to improve the response speed of the photodetectors. High-quality FAPbBr3 perovskite monocrystalline thin films with low trap density of 1.01×109 cm-3, low resistivity of 5.0×105 Ωcm-1 and high carrier mobility of 185 cm2V-1S-1 were obtained by in situ fabrication of perovskite monocrystalline thin films on hole transport layers using a gradient heating nucleation and room temperature growth method. Based on the preparation technique of in situ growth of high-quality perovskite monocrystalline thin films on the hole transport layer and then by thermally-evaporating the electron transport layer and electrodes, the FAPbBr3 perovskite photodiode was successfully fabricated. The device can operate at 0 V bias in the self-driven mode, exhibiting the detectivity, responsivity and external quantum efficiency of 1.26×1013 Jones, 0.33 A/W and 77%, respectively. The rise time and fall time of the device are 4.440 μs and 4.732 μs. The device can be applied as a receiver in a visible light communication system. The system worked successfully and realized the signal transmission of numbers and words.

其他摘要

光电探测器可以将光信号转换成电信号,一直以来在科学研究、成像、自动化生产、军事国防等领域发挥着重要的作用。近年来,得益于钙钛矿材料的直接带隙、吸收系数大、激子扩散长度长等优异的光电特性,为光电探测器的研究开辟了新的、充满活力的空间。窄带(较窄波长范围内的光吸收)光电探测器可以用在机器视觉、多光谱探测和智能识别等领域,在未来工业生产中有巨大的应用潜力;而快响应光电探测器在通信、传感等领域也有广泛的应用空间。面向窄带和快响应钙钛矿光电探测器的需求,本文的具体工作如下:

为了实现钙钛矿光电探测器的窄带探测,本文中引入了亚波长光栅,光场可以通过亚波长光栅进行调制,抑制特定波长光的透射和反射,从而实现窄带吸收增强。采用时域有限差分的方法建立了钙钛矿光电探测器件的光学模型,通过对基于导模共振原理的亚波长光栅衬底结构的设计,进行了光场分布和反射、透射、吸收光谱的建模仿真工作。分析清楚了亚波长光栅对光波长调控的机制,探索了不同尺寸亚波长光栅-钙钛矿薄膜结构对特定探测波长光吸收的影响。在780 nm波长处,对比平面衬底,采用优化后深度290 nm、周期510 nm、填充因子0.39的亚波长光栅作为衬底,MAPbI3钙钛矿材料的吸收率增加了132%(从0.410.95),实现了半峰宽为20 nm的窄带吸收,表明亚波长光栅在钙钛矿窄带探测中有很好的应用前景。

为了实现快响应钙钛矿光电探测器,本文中通过采用低缺陷密度的钙钛矿单晶薄膜,并结合光电二极管的器件结构,以提高器件的响应速度。采用高温成核-室温生长的方法,在TFB空穴传输层上原位生长获得了高质量的FAPbBr3钙钛矿单晶薄膜,其具有极低的缺陷态密度(1.01×109 cm-3)和极高的载流子迁移率(185 cm2V-1S-1)。基于在空穴传输层上原位生长高质量钙钛矿单晶薄膜的制备技术,再通过蒸镀电子传输层和电极,成功制备获得了FAPbBr3钙钛矿光电二极管器件。该器件在0V偏压下自驱动工作,探测率、响应度和外量子效率分别为 1.26×1013 Jones0.33 A/W 77%,响应上升和下降时间分别为4.440 μs4.732 μs。将制备的钙钛矿单晶薄膜光电探测器作为可见光通信系统中的接收端,成功实现了数据传输。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SARAN R, CURRY R J. Lead sulphide nanocrystal photodetector technologies[J]. Nature Photonics, 2016, 10(2):81-92.
[2] CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications[J]. Nano Today, 2015, 10(3):355-396.
[3] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced Materials, 2013, 25(31):4267-4295.
[4] Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors[J]. Journal of Materials Chemistry C, 2019,7(7):1741-1791
[5] LI Q Y, GUO Y L, LIU Y Q. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 2019, 31(17):6359-6379.
[6] DOWNS C, VANDERVELDE T E. Progress in infrared photodetectors since 2000[J]. Sensors, 2013, 13(4):5054-5098.
[7] RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10):7433-7473.
[8] SANG L, LIAO M, SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8):10482-10518.
[9] SUN W, DU Q. Hyperspectral band selection: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):118-139.
[10] CHOW P C Y, SOMEYA T. Organic photodetectors for next-generation wearable electronics[J]. Advanced Materials, 2020, 32(15):7634234.
[11] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970.
[12] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-super structured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
[13] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2):133-138.
[14] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326):722-726.
[15] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for alpha-FAPbBr3 perovskite solar cells[J]. Nature, 2021, 592(7854):381-385.
[16] DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5:5404.
[17] HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 2021, 591(7848):72-77.
[18] KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes[J]. Nature Photonics, 2021, 15(2):148-155.
[19] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.
[20] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organ lead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519-522.
[21] MORKOC H, STRITE S, GAO G B, et al. Large-band-gap sic, III-V nitride, and II-VI ZnSe-based semiconductor-device technologies[J]. Journal of Applied Physics, 1994, 76(3):1363-1398.
[22] SPEIRS M J, DIRIN D N, ABDU-AGUYE M, et al. Temperature dependent behavior of lead sulfide quantum dot solar cells and films[J]. Energy & Environmental Science, 2016, 9(9):2916-2924.
[23] WANG K, WU C C, HOU Y C, et al. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications[J]. Journal of Materials Chemistry A, 2019, 7(43):24661-24690.
[24] DANDIN M, ABSHIRE P, SMELA E. Optical filtering technologies for integrated fluorescence sensors[J]. Lab on a Chip, 2007, 7(8):955-977.
[25] DE IACOVO A, VENETTACCI C, GIANSANTE C, et al. Narrow band colloidal quantum dot photodetectors for wavelength measurement applications[J]. Nanoscale, 2020, 12(18):10044-10050.
[26] DAI Q, XU K, PENG Y, et al. Towards high performance visible-blind narrow band near-infrared photodetectors with integrated perovskite light filter[J]. Infrared Physics & Technology, 2020,108: 103358.
[27] LI L, JIN L, ZHOU Y, et al. Filterless polarization-sensitive 2D perovskite narrow band photodetectors[J]. Advanced Optical Materials, 2019, 7(23):1900988.
[28] HARRISON M, GRüNER J, SPENCER G. Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes[J]. Physics Review B, 1997, 55(12):7831-7849.
[29] FANG Y, DONG Q, SHAO Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10):679-686.
[30] RAO H S, LI W G, CHEN B X, et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors[J]. Advanced Materials, 2017, 29(16):1602639.
[31] SAIDAMINOV M I, HAQUE M A, SAVOIE M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 2016, 28(37):8144-8149.
[32] ZHOU J, LUO J, RONG X, et al. Lead-free perovskite derivative Cs2SnCl6-xBrx single crystals for narrowband photodetectors[J]. Advanced Optical Materials, 2019, 7(10):1900139.
[33] LI L L, DENG Y H, BAO C X, et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response[J]. Advanced Optical Materials, 2017, 5(22):1700672.
[34] WANG J, XIAO S, QIAN W, et al. Self-driven perovskite narrowband photodetectors with tunable spectral responses[J]. Advanced Materials, 2021, 33(3):2005557.
[35] KALCHMAIR S, DETZ H, COLE G, et al. Photonic crystal slab quantum well infrared photodetector[J]. Applied Physics Letters, 2011, 98(1):011105.
[36] SOBHANI A, KNIGHT M W, WANG Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4(1):1643.
[37] CAO F, CHEN J, YU D, et al. Bionic detectors based on low‐bandgap inorganic perovskite for selective NIR‐i photon detection and imaging[J]. Advanced Materials, 2020, 32(6):1905362.
[38] CHEN M, LU L, YU H, et al. Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices[J]. Advanced Science, 2021, 8(18):2101560.
[39] BAO C, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications[J]. Advanced Materials, 2018, 30(38):1806522.
[40] SAIDAMINOV M I, ADINOLFI V, COMIN R, et al. Planar-integrated single-crystalline perovskite photodetectors[J]. Nature Communications, 2015, 6(1):8724.
[41] LI W G, RAO H S, CHEN B X, et al. A formamidinium-methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability[J]. Journal of Materials Chemistry A, 2017, 5(36):19431-19438.
[42] BAO C X, CHEN Z L, FANG Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 2017, 29(39):1703209.
[43] YANG Z, XU Q, WANG X D, et al. Large and ultra stable all-inorganic CsPbBr3 monocrystalline films: low-temperature growth and application for high-performance photodetectors[J]. Advanced Materials, 2018, 30(44):1802110.
[44] YAO M, JIANG J, XIN D, et al. High-temperature stable FAPbBr3 single crystals for. sensitive X-ray and visible light detection toward space[J]. Nano Letters, 2021, 21(9):3947-3955.
[45] PECUNIA V. Efficiency and spectral performance of narrowband organic and perovskite photodetectors: a cross-sectional review[J]. Journal of Physics: Materials, 2019, 2(4):042001.
[46] WANG Y, KUBLITSKI J, XING S, et al. Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing[J]. Materials Horizons, 2021, 9:220-251.
[47] WANG F, ZOU X, XU M, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors[J]. Advanced Science, 2021, 8(14):2100569.
[48] LIU X D, LIN Y W, LIAO Y J, et al. Recent advances in organic near-infrared photodiodes[J]. Journal of Materials Chemistry C, 2018, 6(14):3499-3513.
[49] TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48):1803158.
[50] JAGTAP A, MARTINEZ B, GOUBET N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11):4569-4576.
[51] KLEM E, LEWIS J, GREGORY C, et al. High-performance SWIR sensing from colloidal quantum dot photodiode arrays[C/OL]//LEVAN P D, SOOD A K, WIJEWARNASURIYA P S, et al. Proceeding of SPIE Optical Engineering + Applications, September 19, 2013. San Diego: SPIE, 2013: 8868: 886806
[2022-03-15]
[52] ZHENG L, ZHOU W J, NING Z J, et al. Ambipolar graphene-quantum dot phototransistors with CMOS compatibility[J]. Advanced Optical Materials, 2018, 6(23):1800985.
[53] SONG X X, ZHANG Y T, WANG R, et al. Bulk- and layer-heterojunction phototransistors based on poly 2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene) and PbS quantum dot hybrids[J]. Applied Physics Letters, 2015, 106(25):253501.
[54] ZHANG Y T, SONG X X, WANG R, et al. Comparison of photo response of transistors based on graphene-quantum dot hybrids with layered and bulk heterojunctions[J]. Nanotechnology, 2015, 26(33):335201.
[55] HUISMAN E H, SHULGA A G, ZOMER P J, et al. High gain hybrid graphene-organic semiconductor phototransistors[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11083-11088.
[56] WANG H, KIM D H. Perovskite-based photodetectors: materials and devices[J]. Chemical Society Reviews, 2017, 46(17):5204-5236.
[57] RYCROFT M. Computational electrodynamics, the finite-difference time-domain method[J]. Journal of Atmospheric and Terrestrial Physics, 1996, 15(58):1817-1818.
[58] SUN S, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12):6223-6229.
[59] BHATTACHARYYA S R, GAYEN R N, PAUL R, et al. Determination of optical constants of thin films from transmittance trace[J]. Thin Solid Films, 2009, 517(18):5530-5536.
[60] Refractive index database[DB/OL]. POLYANSKIY M N, 2022
[2022/02/22]. https://refractiveindex.info.
[61] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9):897-903.
[62] KANG R, YEO J S, LEE H J, et al. Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells[J]. Nano Energy, 2016, 27:175-184.
[63] WU D, LI W H, LIU H C, et al. Universal strategy for improving perovskite photodiode performance: interfacial built-in electric field manipulated by unintentional doping[J]. Advanced Science, 2021, 8(18):2101729.
[64] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221):522-525.
[65] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6(1):1-6.
[66] WANG K, YANG D, WU C, et al. Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency[J]. Joule, 2019, 3(2):311-316.
[67] PENG W, WANG L, MURALI B, et al. Solution-grown monocrystalline hybrid perovskite films for hole‐transporter‐free solar cells[J]. Advanced Materials, 2016 28(17):3383-3390.
[68] CHEN Y X, GE Q Q, SHI Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J]. Journal of the American Chemical Society, 2016, 138(50):16196-16199.
[69] CORREA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364):739-744.
[70] COHEN E, LIGHTFOOT E. Coating processes[J]. Kirk-Othmer Encyclopedia of Chemical Technology, 2000:1-68.
[71] MATTOX D M. The foundations of vacuum coating technology[M]. New York: William Andrew Publishing, 2003.
[72] PAZOKI M, HAGFELDT A, EDVINSSON T. Characterization techniques for perovskite solar cell materials[M]. Amsterdam: Elsevier, 2020.
[73] ALIOFKHAZRAEI M, ALI N, CHIPARA M, et al. Handbook of modern coating technologies[M]. Amsterdam: Elsevier, 2021.
[74] WARNER J H, THOMSEN E, WATT A R, et al. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals[J]. Nanotechnology, 2004, 16(2):175-179.
[75] HALL J L, HAWES C. Electron microscopy of plant cells[M]. Cambrige: Academic Press, 1991.
[76] SINGH M K, SINGH A. Characterization of polymers and fibres[M]. Sawston: Woodhead Publishing, 2022.
[77] WALECKI W J, SZONDY F, HILALI M M. Fast in-line surface topography metrology enabling stress calculation for solar cell manufacturing for throughput in excess of 2000 wafers per hour[J]. Measurement Science and Technology, 2008, 19(2):025302.
[78] BROWN S. Theory and simulation of subwavelength high contrast gratings and their applications in vertical-cavity surface-emitting laser devices[D]. Urbana: University of Illinois, 2011.
[79] SANG T, WANG L, JI S, et al. Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane[J]. Journal of the Optical Society of America A, 2009, 26(3):559-565.
[80] POPOV E, MASHEV L, MAYSTRE D. Theoretical study of the anomalies of coated dielectric gratings[J]. Optica Acta: International Journal of Optics, 1986, 33(5):607-619.
[81] MAGNUSSON R, WANG S. New principle for optical filters[J]. Applied Physics Letters, 1992, 61(9):1022-1024.
[82] GOLUBENKO G, SVAKHIN A S, SYCHUGOV V A, et al. Total reflection of light from a corrugated surface of a dielectric waveguide[J]. Soviet Journal of Quantum Electronics, 1985, 15(7):886-887.
[83] XIONGGUI T, CHUNLEI D. Analysis of nonpolarizing narrow-band filters based on resonant anomaly[J]. Acta Optica Sinica, 2004, 24:668-672.
[84] GIESE J A, YOON J W, WENNER B R, et al. Guided-mode resonant coherent light absorbers[J]. Optics Letters, 2014, 39(3):486-488.
[85] RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408):8235.
[86] PARK N-G, GRäTZEL M, MIYASAKA T, et al. Towards stable and commercially available perovskite solar cells[J]. Nature Energy, 2016, 1(11):16152.
[87] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221):522-525.
[88] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6(1):7586.
[89] LIU Y, ZHANG Y, YANG Z, et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors[J]. Materials Today, 2019, 22:67-75.
[90] LIU Y, ZHANG Y, YANG Z, et al. Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41):9204.
[91] MARKOV I V. Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy[M]. Singapore: World Scientific, 1995.
[92] TILLER W A. The science of crystallization: microscopic interfacial phenomena[M]. Cambridge: Cambridge University Press, 1991.
[93] YAO F, PENG J, LI R, et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals[J]. Nature Communications, 2020, 11(1):1194.
[94] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221):519.
[95] LIU Y, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X= Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35):5176-5183.
[96] LIU Y, SUN J, YANG Z, et al. 20-mm-Large single-crystalline formamidinium‐perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11):1829-1837.
[97] RAO H S, CHEN B X, WANG X D, et al. A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell[J]. Chemical Communications, 2017, 53(37):5163-5166.
[98] YANG Z, DENG Y, ZHANG X, et al. High‐performance single‐crystalline perovskite thin‐film photodetector[J]. Advanced Materials, 2018, 30(8):1704333.
[99] PENG W, WANG L, MURALI B, et al. Solution‐grown monocrystalline hybrid perovskite films for hole‐transporter‐free solar cells[J]. Advanced Materials, 2016, 28(17):3383.
[100] CHEN W, TANG H, CHEN Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors[J]. Nano Energy, 2020, 78:105254.
[101] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948):1665-1667.
[102] REN Z, SUN J, LI H, et al. Bilayer PbS quantum dots for high‐performance photodetectors[J]. Advanced Materials, 2017, 29(33):1702055.
[103] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced Materials, 2013, 25(31):4267-4295.
[104] WANG Q, ZHANG G, ZHANG H, et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic‐liquid‐based ink[J]. Advanced Functional Materials, 2021, 31(28):2100857.
[105] DING J, DU S, ZUO Z, et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector[J]. The Journal of Physical Chemistry C, 2017, 121(9):4917-4923.
[106] SONG Q, WANG Y, VOGELBACHER F, et al. Moiré perovskite photodetector toward high‐sensitive digital polarization imaging[J]. Advanced Energy Materials, 2021, 11(29):2100742.
[107] Wang F, Zou X, Xu M, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors[J]. Advanced Science, 2021, 8(14):2100569.
[108] Fang Y, Armin A, Meredith P, et al. Accurate characterization of next-generation thin-film photodetectors[J]. Nature Photonics, 2019, 13(1):1-4.
[109] SHAIKH P A, SHI D, RETAMAL J R D, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection[J]. Journal of Materials Chemistry C, 2016, 4(35):8304-8312.
[110] WANG Q, BAI D, JIN Z, et al. Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment[J]. RSC Advances, 2018, 8(27):14848-14853.
[111] FU X, DONG N, LIAN G, et al. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors[J]. Nano Letters, 2018, 18(2):1213-1220.
[112] ZENG J, LI X, WU Y, et al. Space‐confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit[J]. Advanced Functional Materials, 2018, 28(43):1804394.
[113] GAO J, LIANG Q, LI G, et al. Single-crystalline lead halide perovskite wafers for high performance photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(27):8357-8363.
[114] HE X, WANG Y, LI K, et al. Oriented growth of ultrathin single crystals of 2D Ruddlesden-Popper hybrid lead iodide perovskites for high-performance photodetectors[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15905-15912.
[115] GUI P, ZHOU H, YAO F, et al. Space‐confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near‐ultraviolet photodetection[J]. Small, 2019, 15(39):1902618.
[116] LIU R, ZHOU H, SONG Z, et al. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors[J]. Nanoscale, 2019, 11(19):9302-9309.
[117] LI W G, WANG X D, LIAO J F, et al. A laminar MAPbBr3/MAPbBr3-xIx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance[J]. Journal of Materials Chemistry C, 2019, 7(19):5670-5676.
[118] BAI Y, ZHANG H, ZHANG M, et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X= Cl, Br, I)[J]. Nanoscale, 2020, 12(2):1100-1108.
[119] LI C, LU J, ZHAO Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system[J]. Small, 2019, 15(44):1903599.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TN15
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335773
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Liu CX. RESEARCH ON NARROWBAND AND HIGH RESPONSE SPEED ORGANIC-INORGANIC HYBRID PEROVSKITE PHOTODETECTORS[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930533-刘晨曦-电子与电气工程(3259KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘晨曦]的文章
百度学术
百度学术中相似的文章
[刘晨曦]的文章
必应学术
必应学术中相似的文章
[刘晨曦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。