[1] WITTKOPP P J, HAERUM B K, CLARK A G. Evolutionary changes in cis andtrans gene regulation [J]. Nature, 2004, 430(6995): 85-8.
[2] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of nativechromatin for fast and sensitive epigenomic profiling of open chromatin, DNAbindingproteins and nucleosome position [J]. Nat Methods, 2013, 10(12): 1213-8.
[3] BUENROSTRO J D, WU B, CHANG H Y, et al. ATAC-seq: A Method forAssaying Chromatin Accessibility Genome-Wide [J]. Curr Protoc Mol Biol, 2015,109: 21 29 1- 29 9.
[4] SONG L, CRAWFORD G E. DNase-seq: a high-resolution technique for mappingactive gene regulatory elements across the genome from mammalian cells [J]. ColdSpring Harb Protoc, 2010, 2010(2): pdb prot5384.
[5] THURMAN R E, RYNES E, HUMBERT R, et al. The accessible chromatinlandscape of the human genome [J]. Nature, 2012, 489(7414): 75-82.
[6] BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping andcharacterization of open chromatin across the genome [J]. Cell, 2008, 132(2): 311-22.
[7] GONTARZ P, FU S H, XING X Y, et al. Comparison of differential accessibilityanalysis strategies for ATAC-seq data [J]. Sci Rep-Uk, 2020, 10(1).
[8] NEPH S, VIERSTRA J, STERGACHIS A B, et al. An expansive human regulatorylexicon encoded in transcription factor footprints [J]. Nature, 2012, 489(7414): 83-90.
[9] GUSMAO E G, ALLHOFF M, ZENKE M, et al. Analysis of computationalfootprinting methods for DNase sequencing experiments [J]. Nat Methods, 2016,13(4): 303-9.
[10] PIQUE-REGI R, DEGNER J F, PAI A A, et al. Accurate inference of transcriptionfactor binding from DNA sequence and chromatin accessibilit y data [J]. GenomeRes, 2011, 21(3): 447-55.
[11] GENOMES PROJECT C, ABECASIS G R, AUTON A, et al. An integrated map ofgenetic variation from 1,092 human genomes [J]. Nature, 2012, 491(7422): 56-65.
[12] ROADMAP EPIGENOMICS C, KUNDAJE A, MEULEMAN W, et al . Integrativeanalysis of 111 reference human epigenomes [J]. Nature, 2015, 518(7539): 317-30.
[13] ACKERMANN A M, WANG Z, SCHUG J, et al. Integration of ATAC-seq andRNA-seq identifies human alpha cell and beta cell signature genes [J]. Mol Metab,2016, 5(3): 233-44.
[14] YAN F, POWELL D R, CURTIS D J, et al. From reads to insight: a hitchhiker'sguide to ATAC-seq data analysis [J]. Genome Biol, 2020, 21(1): 22.
[15] FastQC [M]. Andrews S. Babraham Bioinformatics. 2015.
[16] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencingreads [J]. EMBnet J, 2011, 17(1): 10-12.
[17] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer forIllumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-20.
[18] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheelertransform [J]. Bioinformatics, 2009, 25(14): 1754-60.
[19] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J].Nat Methods, 2012, 9(4): 357-9.
[20] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS)[J]. Genome Biol, 2008, 9(9): R137.
[21] KIM T H, REN B. Genome-wide analysis of protein-DNA interactions [J]. AnnuRev Genom Hum G, 2006, 7: 81-102.
[22] HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineagedeterminingtranscription factors prime cis-regulatory elements required formacrophage and B cell identities [J]. Mol Cell, 2010, 38(4): 576-89.
[23] TARBELL E D, LIU T. HMMRATAC: a Hidden Markov ModeleR for ATAC-seq[J]. Nucleic Acids Res, 2019, 47(16): e91.
[24] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIPpeak annotation, comparison and visualization [J]. Bioinformatics, 2015, 31(14):2382-3.
[25] ZHU L J, GAZIN C, LAWSON N D, et al. ChIPpeakAnno: a Bioconductor packageto annotate ChIP-seq and ChIP-chip data [J]. Bmc Bioinformatics, 2010, 11.
[26] GRANT C E, BAILEY T L, NOBLE W S. FIMO: scanning for occurrences of agiven motif [J]. Bioinformatics, 2011, 27(7): 1017-8.
[27] KHAN A, FORNES O, STIGLIANI A, et al. JASPAR 2018: update of the openaccessdatabase of transcription factor binding profiles and its web framework [J].Nucleic Acids Res, 2018, 46(D1): D1284.
[28] MATYS V, KEL-MARGOULIS O V, FRICKE E, et al. TRANSFAC (R) and itsmodule TRANSCompel (R): transcriptional gene regulation in eukaryotes [J].Nucleic Acids Research, 2006, 34(D108-D10.
[29] KULAKOVSKIY I V, VORONTSOV I E, YEVSHIN I S, et al. HOCOMOCO:towards a complete collection of transcription factor binding models for human andmouse via large-scale ChIP-Seq analysis [J]. Nucleic Acids Res, 2018, 46(D1):D252-D9.
[30] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor packagefor differential expression analysis of digital gene expression data [J].Bioinformatics, 2010, 26(1): 139-40.
[31] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change anddispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[32] ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activitiesof regulatory elements [J]. Nat Rev Genet, 2020, 21(2): 71-87.
[33] GAFFNEY D J. Mapping and predicting gene-enhancer interactions [J]. Nat Genet,2019, 51(12): 1662-3.
[34] SCHOENFELDER S, FRASER P. Long-range enhancer-promoter contacts in geneexpression control [J]. Nature Reviews Genetics, 2019, 20(8): 437-55.
[35] GATE R E, CHENG C S, AIDEN A P, et al. Genetic determinants of co-accessiblechromatin regions in activated T cells across humans [J]. Nat Genet, 2018, 50(8):1140-50.
[36] KUMASAKA N, KNIGHTS A J, GAFFNEY D J. High-resolution genetic mappingof putative causal interactions between regions of open chromatin [J]. NatureGenetics, 2019, 51(1): 128-+.
[37] -CHRONOWSKA A, BENAGLIO P, etal. Chromatin co-accessibility is highly structured, spans entire chromosomes, andmediates long range regulatory genetic effects [J]. bioRxiv, 2019, 604371.
[38] PLINER H A, PACKER J S, MCFALINE-FIGUEROA J L, et al. Cicero Predictscis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data [J].Mol Cell, 2018, 71(5): 858-71 e8.
[39] DONG K N, ZHANG S H. Joint reconstruction of cis-regulatory interactionnetworks across multiple tissues using single-cell chromatin accessibility data [J].Brief Bioinform, 2021, 22(3):
[40] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool fortranscriptomics [J]. Nat Rev Genet, 2009, 10(1): 57-63.
[41] STUART T, SATIJA R. Integrative single-cell analysis [J]. Nature ReviewsGenetics, 2019, 20(5): 257-72.
[42] TRAPNELL C. Defining cell types and states with single-cell genomics [J].Genome Res, 2015, 25(10): 1491-8.
[43] WAGNER D E, KLEIN A M. Lineage tracing meets single-cell omics: opportunitiesand challenges [J]. Nat Rev Genet, 2020, 21(7): 410-27.
[44] QIU X J, MAO Q, TANG Y, et al. Reversed graph embedding resolves complexsingle-cell trajectories [J]. Nature Methods, 2017, 14(10): 979-+.
[45] REGEV A, TEICHMANN S A, LANDER E S, et al. The Human Cell Atlas [J].Elife, 2017, 6.
[46] TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptomeanalysis of a single cell [J]. Nature Methods, 2009, 6(5): 377-U86.
[47] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet Barcoding for Single -CellTranscriptomics Applied to Embryonic Stem Cells [J]. Cell, 2015, 161(5): 1187-201.
[48] CUSANOVICH D A, DAZA R, ADEY A, et al. Multiplex single cell profiling ofchromatin accessibility by combinatorial cellular indexing [J]. Science, 2015,348(6237): 910-4.
[49] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method forsingle cell chromatin accessibility profiling [J]. Nat Commun, 2018, 9(1): 5345.
[50] BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatinaccessibility reveals principles of regulatory variation [J]. Nature, 2015, 523(7561):486-90.
[51] MA S, ZHANG B, LAFAVE L M, et al. Chromatin Potential Identified by SharedSingle-Cell Profiling of RNA and Chromatin [J]. Cell, 2020, 183(4): 1103-16 e20.
[52] STUART T, BUTLER A, HOFFMAN P, et al. Comprehensive Integration of Single -Cell Data [J]. Cell, 2019, 177(7): 1888-902 e21.
[53] CHEN H, LAREAU C, ANDREANI T, et al. Assessment of computational methodsfor the analysis of single-cell ATAC-seq data [J]. Genome Biol, 2019, 20(1): 241.
[54] MEREU E, LAFZI A, MOUTINHO C, et al. Benchmarking single-cell RNAsequencingprotocols for cell atlas projects [J]. Nat Biotechnol, 2020, 38(6): 747-+.
[55] CUSANOVICH D A, HILL A J, AGHAMIRZAIE D, et al. A Single-Cell Atlas of InVivo Mammalian Chromatin Accessibility [J]. Cell, 2018, 174(5): 1309-24 e18.
[56] CUSANOVICH D A, REDDINGTON J P, GARFIELD D A, et al. The cisregulatorydynamics of embryonic development at single-cell resolution [J]. Nature,2018, 555(7697): 538-+.
[57] ZHAO C C, HU S E, HUO X, et al. Dr. seq2: A quality control and analysispipeline for parallel single cell transcriptome and epigenome data [J]. Plos One,2017, 12(7):
[58] JI Z, ZHOU W, JI H. Single-cell regulome data analysis by SCRAT [J].Bioinformatics, 2017, 33(18): 2930-2.
[59] SCHEP A N, WU B, BUENROSTRO J D, et al. chromVAR: inferring transcription -factor-associated accessibility from single-cell epigenomic data [J]. Nat Methods,2017, 14(10): 975-8.
[60] DE BOER C G, REGEV A. BROCKMAN: deciphering variance in epigenomicregulators by k-mer factorization [J]. BMC Bioinformatics, 2018, 19(1): 253.
[61] ZAMANIGHOMI M, LIN Z, DALEY T, et al. Unsupervised clustering andepigenetic classification of single cells [J]. Nat Commun, 2018, 9(1): 2410.
[62] BRAVO GONZALEZ-BLAS C, MINNOYE L, PAPASOKRATI D, et al. cisTopic:cis-regulatory topic modeling on single-cell ATAC-seq data [J]. Nat Methods, 2019,16(5): 397-400.
[63] LAREAU C A, DUARTE F M, CHEW J G, et al. Droplet-based combinatorialindexing for massive-scale single-cell chromatin accessibility [J]. Nat Biotechnol,2019, 37(8): 916-24.
[64] BAKER S M, ROGERSON C, HAYES A, et al. Classifying cells with Scasat, asingle-cell ATAC-seq analysis tool [J]. Nucleic Acids Res, 2019, 47(2): e10.
[65] URRUTIA E, CHEN L, ZHOU H, et al. Destin: toolkit for single-cell analysis ofchromatin accessibility [J]. Bioinformatics, 2019, 35(19): 3818-20.
[66] CAI S, GEORGAKILAS G K, JOHNSON J L, et al. A Cosine Similarity-BasedMethod to Infer Variability of Chromatin Accessibility at the Single -Cell Level [J].Front Genet, 2018, 9.
[67] YU W, UZUN Y, ZHU Q, et al. scATAC-pro: a comprehensive workbench forsingle-cell chromatin accessibility sequencing data [J]. Genome Biol, 2020, 21(1):94.
[68] TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics andregulators of cell fate decisions are revealed by pseudotemporal ordering of singlecells [J]. Nat Biotechnol, 2014, 32(4): 381-6.
[69] STUART T, SRIVASTAVA A, LAREAU C, et al. Multimodal single -cell chromatinanalysis with Signac [J]. bioRxiv, 2020, 2020.11.09.373613.
[70] FANG R, PREISSL S, LI Y, et al. Comprehensive analysis of single cell ATAC-seqdata with SnapATAC [J]. Nat Commun, 2021, 12(1): 1337.
[71] GRANJA J M, CORCES M R, PIERCE S E, et al. ArchR is a scalable softwarepackage for integrative single-cell chromatin accessibility analysis [J]. NatureGenetics, 2021,
[72] JI Z, ZHOU W, HOU W, et al. Single-cell ATAC-seq signal extraction andenhancement with SCATE [J]. Genome Biol, 2020, 21(1): 161.
[73] Picard toolkit [M]. Broad Institute, GitHub repository; Broad Institute. 2019.
[74] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map formatand SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-9.
[75] AMEMIYA H M, KUNDAJE A, BOYLE A P. The ENCODE Blacklist:Identification of Problematic Regions of the Genome [J]. Sci Rep, 2019, 9(1): 9354.
[76] CONSORTIUM E P. An integrated encyclopedia of DNA elements in the humangenome [J]. Nature, 2012, 489(7414): 57-74.
[77] BERNSTEIN B E, STAMATOYANNOPOULOS J A, COSTELLO J F, et al. TheNIH Roadmap Epigenomics Mapping Consortium [J]. Nat Biotechnol, 2010, 28(10):1045-8.
[78] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodalsingle-cell data [J]. Cell, 2021, 184(13): 3573-87 e29.
[79] KURIMO M. Indexing audio documents by using latent semantic analysis and SOM[J]. Kohonen Maps, 1999, 363-74.
[80] GRANJA J M, CORCES M R, PIERCE S E, et al. ArchR is a scalable softwarepackage for integrative single-cell chromatin accessibility analysis (vol 53, pg 403,2021) [J]. Nature Genetics, 2021, 53(6): 935.
[81] KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integrationof single-cell data with Harmony [J]. Nat Methods, 2019, 16(12): 1289-96.
[82] SATPATHY A T, GRANJA J M, YOST K E, et al. Massively parallel single-cellchromatin landscapes of human immune cell development and intratumoral T cellexhaustion [J]. Nat Biotechnol, 2019, 37(8): 925-36.
[83] GRANJA J M, KLEMM S, MCGINNIS L M, et al. Single-cell multiomic analysisidentifies regulatory programs in mixed-phenotype acute leukemia [J]. NatBiotechnol, 2019, 37(12): 1458-65.
[84] WALTMAN L, VAN ECK N J. A smart local moving algorithm for large -scalemodularity-based community detection [J]. Eur Phys J B, 2013, 86(11).
[85] MCINNES L, HEALY J, MELVILLE J. Umap: Uniform manifold approximationand projection for dimension reduction [J]. arXiv preprint arXiv:180203426, 2018.
[86] VAN DER MAATEN L, HINTON G. Visualizing Data using t -SNE [J]. J MachLearn Res, 2008, 9: 2579-605.
[87] JIANG L, CHEN H D, PINELLO L, et al. GiniClust: detecting rare cell types fromsingle-cell gene expression data with Gini index [J]. Genome Biology, 2016, 17.
[88] TSOUCAS D, YUAN G C. GiniClust2: a cluster-aware, weighted ensembleclustering method for cell-type detection [J]. Genome Biology, 2018, 19.
[89] PLINER H A, SHENDURE J, TRAPNELL C. Supervised classification enablesrapid annotation of cell atlases [J]. Nat Methods, 2019, 16(10): 983-6.
[90] GRIFFITHS J A, RICHARD A C, BACH K, et al. Detection and removal of barcodeswapping in single-cell RNA-seq data [J]. Nat Commun, 2018, 9(1): 2667.
[91] LUN A T L, RIESENFELD S, ANDREWS T, et al. EmptyDrops: distinguishingcells from empty droplets in droplet-based single-cell RNA sequencing data [J].Genome Biol, 2019, 20(1): 63.
[92] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Sparse inverse covariance estimationwith the graphical lasso [J]. Biostatistics, 2008, 9(3): 432-41.
[93] JAVIERRE B M, BURREN O S, WILDER S P, et al. Lineage-Specific GenomeArchitecture Links Enhancers and Non-coding Disease Variants to Target GenePromoters [J]. Cell, 2016, 167(5): 1369-+.
[94] BUENROSTRO J D, CORCES M R, LAREAU C A, et al. Integrated Single -CellAnalysis Maps the Continuous Regulatory Landscape of Human HematopoieticDifferentiation [J]. Cell, 2018, 173(6): 1535-48 e16.
[95] WANG X, SHEN X, CHEN S, et al. Reinvestigation of Classic T Cell Subsets andIdentification of Novel Cell Subpopulations by Single-Cell RNA Sequencing [J]. JImmunol, 2022, 208(2): 396-406.
[96] TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptomeanalysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-82.
[97] WANG C F, SUN D Q, HUANG X, et al. Integrative analyses of single -celltranscriptome and regulome using MAESTRO [J]. Genome Biology, 2020, 21(1).
[98] STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitopeand transcriptome measurement in single cells [J]. Nat Methods, 2017, 14(9): 865-8.
[99] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structureprediction with AlphaFold [J]. Nature, 2021, 596(7873): 583-9.
[100] LI Z, LI Y, ZHANG B, et al. DeeReCT-APA: Prediction of AlternativePolyadenylation Site Usage Through Deep Learning [J]. Genomics ProteomicsBioinformatics, 2021.
[101] ZENG T, LI Y I. Predicting RNA splicing from DNA sequence using Pangolin [J].bioRxiv, 2021, 2021.07.06.451243.
[102] JAGANATHAN K, KYRIAZOPOULOU PANAGIOTOPOULOU S, MCRAE J F, etal. Predicting Splicing from Primary Sequence with Deep Learning [J]. Cell, 2019,176(3): 535-48 e24.
修改评论