[1] 张玉卓 ,刘玮 . 我国煤烟型污染防治策略研究 [J].中外能源 ,2013,18(04):1-6.
[2] ZHENG B, TONG D, LI M, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111.
[3] 黄华.规制约束—政策激励下中国煤电行业清洁化研究[D].北京交通大学,2019.
[4] 张美珍 .中国煤炭清洁发电技术扩散及其驱动政策研究[D].中国矿业大学 ,2020.
[5] 中国社会科学院经济研究所课题组 ,黄群慧 .“五年规划 ”的历史经验与“十四五年规划 ”的指导思想研究 [J].经济学动态 ,2020(04):3-14.
[6] 刘江宁.强抗硫CuAl基复合氧化物脱硝催化剂的构筑及其性能提升机制研究[D].太原理工大学,2021.
[7] 周长城 .集中供热锅炉烟气脱硝关键技术研发及工程应用研究 [D].东南大学 ,2018.
[8] 第二次全国污染源普查公报 [J].环境保护 ,2020,48(18):8-10.
[9] 汪安东 ,李君 ,范鲁艳 ,等 .SCR催化器内浓度场影响因素的仿真研究 [J].车用发动机,2016(05):5-10.
[10] 晏然.分子筛限域锰铈复合氧化物的制备及其低温脱硝性能研究[D].南昌大学,2020.
[11] 宋忠贤.固体酸改性CeO2催化剂的制备及其NH3-SCR机理研究[D].昆明理工大学,2017.
[12] 喻成龙,黄碧纯,杨颖欣.分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J].华南理工大学学报(自然科学版),2015 ,43(03):143-150.
[13] 本刊编辑部.《中国移动源环境管理年报 (2020)》发布 》发布 [J].中国能源 ,2020,42(08):1.
[14] SHAN YL, DU JP, ZHANG Y, et al. Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites[J]. National Science Review, 2021, 8(10): 139-158.
[15] 刘海帆,肖献法.重型柴油车"注册登记"时间:标准规定7月1日实施国Ⅵa,部分省市"延期"国Ⅴ标准1~6个月[J].商用汽车,2021(6):5.
[16] 刘丹. 水泥行业典型排放物的分析与控制[D].中国石油大学(北京),2017.
[17] 秦玉阔.低氮燃烧技术在重整脱庚烷塔底再沸炉的应用[J].化工技术与开发,2019,48(05):77-79.
[18] 王邓军.蜂窝状活性炭担载Mn基氧化物用于NO的低温催化还原[D].华东理工大学,2011.
[19] 窦生平.载体改性对钒钛SCR催化剂脱硝性能的影响[D].江苏大学,2019.
[20] 姬发荣. VOx/CeO2体系NH3-SCR催化剂V-Ce相互作用及活性位研究[D].天津大学,2019.
[21] 杨津智. 定州电厂SCR脱硝工程的改造[D].华北电力大学,2015.
[22] 王琛宇,陈振斌,邓交均,等.船用调质重油燃烧及减排技术的研究进展[J].能源工程,2021(01):63-69.
[23] GONG PJ, XIE JL, FANG D, et al. Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P[J]. Applied Surface Science, 2020, 505: 144641.
[24] HAN LP, CAI SX, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
[25] BURCH R, RAMLI A. A comparative investigation of the reduction of NO by CH4 on Pt, Pd, and Rh catalysts[J]. Applied Catalysis B: Environmental, 1998, 15(1-2): 49-62.
[26] 沈岳松,祝社民,沈晓冬.选择性催化还原脱硝催化材料研究进展[J].中国材料进展,2019,38(12):1125-1134.
[27] 李俊华, 郝吉明, 傅立新,等.富氧条件下贵金属催化剂上丙烯选择性还原NO研究[J].高等学校化学学报, 2003, 24(011):2060-2064.
[28] GARCIA-CORTES J M, PEREZ-RAMIREZ J, ILLAN-GOMEZ M J, et al. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene[J]. Applied Catalysis B: Environmental, 2001, 30: 399-408.
[29] 于青,孔凡晓,李兰冬,等.Pd基催化剂上H2快速选择催化还原NOx[J].催化学报,2010,31(03):261-263.
[30] SZYMASZEK A, SAMOJEDEN B, MOTAK M. The deactivation of industrial scr catalysts-a short review[J]. Energies, 2020, 13(15): 3870.
[31] CHEN CM, CAO Y, LIU ST, et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chinese Journal of Catalysis, 2018, 39(8): 1347-1365.
[32] 王美鑫. MnCeTiOx低温NH3-SCR脱硝催化剂改性及性能研究[D].太原理工大学,2020.
[33] PHIL H H, REDDY M P, KUMAR P A, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis B: Environmental, 2008, 78(3-4): 301-308.
[34] DU XS, GAO X, FU YC, et al. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. Journal of Colloid and Interface Science, 2012, 368(1): 406-412.
[35] LEE K J, KUMAR P A, MAQBOOL M S, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142-143: 705-717.
[36] SONG I, YOUN S, LEE H, et al. Effects of microporous TiO2 support on the catalytic and structural properties of V2O5 /microporous TiO2 for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 210: 421-431.
[37] CAMPOSECO R, CASTILLO S, MUGICA V, et al. Role of V2O5–WO3/H2Ti3O7-nanotube-model catalysts in the enhancement of the catalytic activity for the SCR-NH3 process[J]. Chemical Engineering Journal, 2014, 242: 313-320.
[38] ARNARSON L, RASMUSSEN S B, FALSIG H, et al. Coexistence of square pyramidal structures of oxo vanadium (+5) and (+4) species over low-coverage VOx /TiO2 (101) and (001) anatase catalysts[J]. The Journal of Physical Chemistry C, 2015, 119(41): 23445-23452.
[39] Yu WC, Wu XD, Si ZC, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Applied Surface Science, 2013, 283:209-214.
[40] MARBERGER A, ELSENER M, FERRI D, et al. VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging[J]. Catalysts, 2015, 5(4): 1704-1720.
[41] QI G, YANG RT, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106..
[42] SUN P, GUO RT, LIU SM, et al. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Applied Catalysis A: General, 2017, 531: 129-138.
[43] KANG M, PARK E D, KIM J M, et al. Cu–Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today, 2006, 111(3-4): 236-241.
[44] LIU ZM, ZHU JZ, LI JH, et al. Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14500-14508.
[45] ZUO JL, CHEN ZH, WANG FR, et al. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2647-2655.
[46] LIAN ZH, LIU FD, HE H, et al. Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Chemical Engineering Journal, 2014, 250: 390-398.
[47] GONG PJ, XIE JL, FANG D, et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chinese Journal of Catalysis, 2017, 38(11): 1925-1934.
[48] FAN ZY, WANG ZY, SHI JW, et al. Charge-redistribution-induced new active sites on (001) facets of α-Mn2O3 for significantly enhanced selective catalytic reduction of NO by NH3[J]. Journal of Catalysis, 2019, 370: 30-37.
[49] TIAN W, YANG HS, FAN XY, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. Journal of Hazardous Materials, 2011, 188(1-3): 105-109.
[50] JIANG HX, ZHAO J, JIANG DY, et al. Hollow MnOx–CeO2 nanospheres prepared by a green route: a novel low-temperature NH3-SCR catalyst[J]. Catalysis Letters, 2014, 144(2): 325-332.
[51] YU J, GUO F, WANG YL, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental, 2010, 95(1-2): 160-168.
[52] JIANG HX, WANG QY, WANG HQ, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26817-26826.
[53] JIANG HX, NIU Y, WANG QY, et al. Single-phase SO2-resistant to poisoning Co/Mn-MOF-74 catalysts for NH3-SCR[J]. Catalysis Communications, 2018, 113: 46-50.
[54] LIU CX, YANG SJ, MA L, et al. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catalysis Letters, 2013, 143(7): 697-704.
[55] LIU J, MEEPRASERT J, NAMUANGRUK S, et al. Facet–activity relationship of TiO2 in Fe2O3 /TiO2 nanocatalysts for selective catalytic reduction of NO with NH3 : In Situ DRIFTs and DFT Studies[J]. The Journal of Physical Chemistry C, 2017, 121(9): 4970-4979.
[56] QU WY, CHEN YX, HUANG ZW, et al. Active tetrahedral iron sites of γ-Fe2O3 catalyzing NO reduction by NH3[J]. Environmental Science & Technology Letters, 2017, 4(6): 246-250.
[57] YANG SJ, LIU CX, CHANG HZ, et al. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization[J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5601-5610.
[58] SUN JF, LU YY, ZHANG L, et al. Comparative study of different doped metal cations on the reduction, acidity, and activity of Fe9M1Ox (M = Ti4+, Ce4+/3+, Al3+) catalysts for NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12101-12110.
[59] FOO R, VAZHNOVA T, LUKYANOV D B, et al. Formation of reactive Lewis acid sites on Fe/WO3-ZrO2 catalysts for higher temperature SCR applications[J]. Applied Catalysis B: Environmental, 2015, 162: 174-179.
[60] HUANG CY, GUO RT, PAN WG, et al. SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: the improved K resistance[J]. Journal of the Energy Institute, 2019, 92(5): 1364-1378.
[61] CHEN YX, LI C, CHEN JX, et al. Self-prevention of well-defined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR[J]. Environmental Science and Technology, 2018, 52(20):11796-11802.
[62] 阎清华. 中低温铜基SCR催化剂的制备及脱硝性能研究[D].北京林业大学.
[63] YAN QH, HOU XT, LIU GC, et al. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3[J]. Journal of Hazardous Materials, 2020, 400: 123260.
[64] CHMIELARZ L, KUŚTROWSKI P, RAFALSKA-ŁASOCHA A, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Applied Catalysis B: Environmental, 2002, 35(3): 195-210.
[65] YAN QH, NIE Y, YANG RY, et al. Highly dispersed CuyAlOx mixed oxides as superior low-temperature alkali metal and SO2 resistant NH3-SCR catalysts[J]. Applied Catalysis A: General, 2017, 538: 37-50.
[66] WANG RH, HAO ZF, LI Y, et al. Relationship between structure and performance of a novel highly dispersed MnOx on Co-Al layered double oxide for low temperature NH3-SCR[J]. Applied Catalysis B: Environmental, 2019, 258: 117983.
[67] WANG RN, WU X, ZOU CL, et al. NOx removal by selective catalytic reduction with ammonia over a hydrotalcite-derived NiFe mixed oxide[J]. Catalysts, 2018, 8(9): 384.
[68] CHEN SN, YAN QH, ZHANG C, et al. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J]. Catalysis Today, 2019, 327: 81-89.
[69] WANG MX, PENG ZL, ZHANG CM, et al. Effect of copper precursors on the activity and hydrothermal stability of CuII-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9(9): 781.
[70] WANG JC, PENG ZL, QIAO H, et al. Influence of aging on in situ hydrothermally synthesized Cu-SSZ-13 catalyst for NH3-SCR reaction[J]. RSC Advances, 2014, 4(80): 42403-42411.
[71] REN LM, ZHU LF, YANG CG, et al. Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Chemical Communications, 2011, 47(35): 9789-9791.
[72] JANGJOU Y, DO Q, GU YT, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2): 1325-1337.
[73] 朱婷. 铜钼、钴铁和铁钼复合氧化物的制备及其在选择性催化还原NOx中的研究[D].大连理工大学,2020.
[74] LIU JX, LIU J, ZHAO Z, et al. A unique Fe/Beta@TiO2 core–shell catalyst by small-grain molecular sieve as the core and TiO2 nanosize thin film as the shell for the removal of NOx [J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5833-5842.
[75] LIU JX, LIU J, ZHAO Z, et al. Fe-Beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3[J]. AIChE Journal, 2017, 63(10): 4430-4441.
[76] LIU JX, DU YH, LIU J, et al. Design of MoFe/Beta@CeO2 catalysts with a core−shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2017, 203: 704-714.
[77] ZHANG L, DU TY, QU HX, et al. Synthesis of Fe-ZSM-5@Ce/mesoporous-silica and its enhanced activity by sequential reaction process for NH3-SCR[J]. Chemical Engineering Journal, 2017, 313: 702-710.
[78] CHI B, QU HX, XING X, et al. Assembly of hollow CeO2@Fe-ZSM-5 and SCR performance[J]. Journal of Alloys and Compounds, 2017, 726: 906-912.
[79] DU TY, QU HX, LIU Q, et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR[J]. Chemical Engineering Journal, 2015, 262: 1199-1207.
[80] SULTANA A, SASAKI M, SUZUKI K, et al. Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR[J]. Catalysis Communications, 2013, 41: 21-25.
[81] ZHANG T, LIU J, WANG DX, et al. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts: the Fe-Cu bimetallic effect[J]. Applied Catalysis B: Environmental, 2014, 148-149: 520-531.
[82] JOUINI H, MARTINEZ-ORTIGOSA J, MEJRI I, et al. On the performance of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3: the influence of preparation method[J]. Research on Chemical Intermediates, 2019, 45(3): 1057-1072.
[83] WANG AY, WANG YL, WALTER E D, et al. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: hydrothermal aging and propylene poisoning effects[J]. Catalysis Today, 2019, 320: 91-99.
[84] LAI SS, MENG DM, ZHAN WC, et al. The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2015, 5(110): 90235-90244.
[85] ZHAO HW, LI HS, LI XH, et al. The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2017, 297: 84-91.
[86] ZHANG D, YANG R T. NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst: performance enhancement by doping Fe and MnCe and insight into N2O formation[J]. Applied Catalysis A: General, 2017, 543: 247-256.
[87] ZHANG RR, LI YH, ZHEN TL. Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13[J]. RSC Advances, 2014, 4(94): 52130-52139.
[88] ZHAO ZC, YU R, SHI C, et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NOx[J]. Catalysis Science & Technology, 2019, 9(1): 241-251.
[89] MOLINER M, FRANCH C, PALOMARES E, et al. Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx[J]. Chemical Communications, 2012, 48(66): 8264.
[90] LEE J H, KIM Y J, RYU T, et al. Synthesis of zeolite UZM-35 and catalytic properties of copper-exchanged UZM-35 for ammonia selective catalytic reduction[J]. Applied Catalysis B: Environmental, 2017, 200: 428-438.
[91] SONG J, WANG YL, WALTER E D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227.
[92] 张文博 ,陈佳玲 陈佳玲 ,郭立 ,等.金属负载型分子筛催化剂的 金属负载型分子筛催化剂的 金属负载型分子筛催化剂的 金属负载型分子筛催化剂的 金属负载型分子筛催化剂的 金属负载型分子筛催化剂的 NH3-SCR机理研究进展 机理研究进展 机理研究进展 机理研究进展 [J].燃料化学 燃料化学 学报 ,2021,49(09):1294-1315.
[93] ZONES S I . Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide[J]. Journal of the Chemical Society Faraday Transactions, 1991, 87(22):3709-3716.
[94] 王余杰,黄美婷,韩杨,等.SSZ-13分子筛合成与应用研究进展[J].西安文理学院学报(自然科学版),2020,23(02):81-86.
[95] 刘春红,郑渭建,孙士恩,等.Cu-SSZ-13分子筛氮氧化物SCR催化机理的研究进展[J].化学试剂,2020,42(12):1391-1397.
[96] KWAK J H, TONKYN R G, KIM D H, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. Journal of Catalysis, 2010, 275(2): 187-190.
[97] MARTÍNEZ-FRANCO R, MOLINER M, THOGERSEN J R, et al. Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx [J]. ChemCatChem, 2013, 5(11): 3316-3323.
[98] ZHANG T, QIU F, CHANG HZ, et al. Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods[J]. Catalysis Science & Technology, 2016, 6(16): 6294-6304.
[99] 赵小鸽,刘梦梦,王建成,等.Cu-SSZ-13分子筛NH3-SCR脱硝技术研究[J].现代化工,2017,37(09):34-39.
[100] CHEN BH, XU RN, ZHANG RD, et al. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environmental Science & Technology, 2014, 48(23): 13909-13916.
[101] WANG XH, ZHANG RD, WANG H, et al. Strategy on effective synthesis of SSZ-13 zeolite aiming at outstanding performances for NH3-SCR process[J]. Catalysis Surveys from Asia, 2020, 24(2): 143-155.
[102] HAN JF, JIN XT, SONG CF, et al. Rapid synthesis and NH3 -SCR activity of SSZ-13 zeolite via coal gangue[J]. Green Chemistry, 2020, 22(1): 219-229.
[103] SHAN YL, SHI XY, DU JP, et al. SSZ-13 synthesized by solvent-free method: a potential candidate for NH3-SCR catalyst with high activity and hydrothermal stability[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5397-5403.
[104] XIONG X, YUAN DZ, WU QM, et al. Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water[J]. Journal of Materials Chemistry A, 2017, 5(19): 9076-9080.
[105] ZHAO ZC, YU R, ZHAO RR, et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability[J]. Applied Catalysis B: Environmental, 2017, 217: 421-428.
[106] OORD R, TEN HAVE I C, ARENDS J M, et al. Enhanced activity of desilicated Cu-SSZ-13 for the selective catalytic reduction of NOx and its comparison with steamed Cu-SSZ-13[J]. Catalysis Science & Technology, 2017, 7(17): 3851-3862.
[107] GAO F, WALTER E D, KARP E M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29.
[108] ZHANG T, QIU F, LI JH. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3: enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Applied Catalysis B: Environmental, 2016, 195: 48-58.
[109] TAO YS, KANOH H, ABRAMS L, et al. Mesopore-modified zeolites: preparation, characterization, and applications[J]. Chemical Reviews, 2006, 106(3): 896-910.
[110] KUMAR A , SMITH M A , KAMASAMUDRAM K , et al. Chemical deSOx: An effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning[J]. Catalysis Today, 2016, 267:10-16.
[111] SU WK, LI ZG, ZHANG YN, et al. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst[J]. Catalysis Science & Technology, 2017, 7(7): 1523-1528.
[112] WIJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6(8): 2565-2579.
[113] JANGJOU Y, WANG D, KUMAR A, et al. SO2 poisoning of the NH3-SCR reaction over Cu-SAPO-34:effect of ammonium sulfate versus other s-containing species[J]. ACS Catalysis, 2016, 6(10): 6612-6622.
[114] HAMMERSHOI P S, JENSENA D, JANSSENST. Impact of SO2-poisoning over the lifetime of a Cu-CHA catalyst for NH3-SCR[J]. Applied Catalysis B Environmental, 2018, 238: 104-110.
[115] SHAN YL, SHI XY, YAN ZD, et al. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging[J]. Catalysis Today, 2019, 320: 84-90.
[116] WEI L, YAO DW, WU F, et al. Impact of hydrothermal aging on SO2 poisoning over Cu-SSZ-13 diesel exhaust SCR catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 3949-3958.
[117] SHIH A J, KHURANA I, LI H, et al. Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction[J]. Applied Catalysis A: General, 2019, 574: 122-131.
[118] YU R, ZHAO ZC, HUANG SJ, et al. Cu-SSZ-13 zeolite–metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2020, 269: 118825.
[119] CHEN ZQ, LIU L, QU HX, et al. Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ZSM-5: the contribution to activity and hydrothermal stability in the selective catalytic reduction reaction[J]. Journal of Catalysis, 2020, 392: 217-230.
[120] 张洪亮,龙红明,李家新,等.铁基催化剂用于氨选择性催化还原氮氧化物研究进展[J].无机化学学报,2019,35(05):753-768.
[121] 郭婉秋.铈掺杂钛锆固溶体催化剂的制备与催化还原NOx的实验研究[D].东南大学,2016.
[122] 高晓霞,王奖,徐爱菊,等.Ni-Co-Al混合氧化物的制备及其丙烷氧化脱氢催化性能[J].分子催化,2019,33(06):531-541.
[123] YAN QH, CHEN SN, ZHANG C, et al. Synthesis of Cu0.5Mg1.5Mn0.5Al0.5Ox mixed oxide from layered double hydroxide precursor as highly efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Journal of Colloid and Interface Science, 2018, 526: 63-74.
[124] MA Y K, RIGOLET S, MICHELIN L, et al. Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique[J]. Microporous and Mesoporous Materials, 2021, 311:110683.
[125] XIE LJ, LIU FD, REN LM, et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2014, 48(1): 566-572.
[126] GUO MY, LIU QL, ZHAO PP, et al. Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction[J]. Chemical Engineering Journal, 2019, 361: 830-838.
[127] ZHANG J, SHAN YL, ZHANG L, et al. Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2020, 277: 119193.
[128] SHAN YL, SHAN WP, SHI XY, et al. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2019, 264:118511.
[129] B. J, HATHAWAY. Copper(II) ammonia complexes[J]. Coordination Chemistry Reviews, 1970,5:1-43.
修改评论