[1] RONG W, ZHANG H, MAO Z, et al. Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622: 126712.
[2] ZHANG X, LIU X, LAAKSO J, et al. Easy-to-clean property and durability of superhydrophobic flaky γ-alumina coating on stainless steel in field test at a paper machine[J]. Applied Surface Science, 2012, 258(7): 3102–3108.
[3] WANG Z, ZHAO Q Z. Friction reduction of steel by laser-induced periodic surface nanotextures with atomic layer deposited TiO2 coating[J]. Surface and Coatings Technology, 2018, 344: 269–275.
[4] HSIUNG B K, SIDDIQUE R H, STAVENGA D G, et al. Rainbow peacock spiders inspire miniature super-iridescent optics[J]. Nature Communications, 2017, 8(1): 1–8.
[5] DOSTOVALOV A, BRONNIKOV K, KOROLKOV V, et al. Hierarchical anti-reflective laserinduced periodic surface textures (LIPSSs) on amorphous Si films for sensing applications[J]. Nanoscale, 2020, 12(25): 13431–13441.
[6] ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062–1066.
[7] MALSHE A P, BAPAT S, RAJURKAR K P, et al. Bio-inspired textures for functional applications[J]. CIRP Annals, 2018, 67(2): 627–650.
[8] CHATTOPADHYAY S, HUANG Y F, JEN Y J, et al. Anti-reflecting and photonic nanotextures[J]. Materials Science and Engineering R, 2010, 69(1–3): 1–35.
[9] GONZALEZ F L, GORDON M J. Bio-inspired, sub-wavelength surface textures for ultrabroadband, omni-directional anti-reflection in the mid and far ir[J]. Optics Express, 2014, 22(11): 12808.
[10] SHI N N, TSAI C C, CAMINO F, et al. Keeping cool: enhanced optical reflection and heat dissipation in saharan silver ants[J]. Science, 2015, 349(6245): 298–301.
[11] HAN Z, MU Z, LI B, et al. A high-transmission, multiple antireflective surface inspired from bilayer 3D ultrafine hierarchical textures in butterfly wing scales[J]. Small, 2016, 12(6): 713–720.
[12] RICHARDS B S. Single-material TiO2 double-layer anti-reflection coatings[J]. Solar Energy Materials and Solar Cells, 2003, 79(3): 369–390.57
[13] ZHANG F, WANG H, WANG C, et al. Direct femtosecond laser writing of inverted array for broadband anti-reflection in the far-infrared[J]. Optics and Lasers in Engineering, 2020, 129: 106062.
[14] LEON J J D, HISZPANSKI A M, BOND T C, et al. Design rules for tailoring anti-reflection properties of hierarchical optical textures[J]. Advanced Optical Materials, 2017, 5(13):1700080.
[15] ZOU T, ZHAO B, XIN W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science and Applications, 2020, 9(1):69.
[16] SHEN L, DU H, YANG J, et al. Optimized broad band and quasi-omnidirectional anti-reflection properties with moth-eye textures by low cost replica molding[J]. Applied Surface Science, 2015, 325: 100–104.
[17] YANG S, ZHANG L, GE P. Experimental study of the pyramidal texturization on the surface of photovoltaic silicon with cemented carbide micro-milling tool[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(9–12): 3187–3196.
[18] CHEN T, WANG W, TAO T, et al. Multi-scale micro-nano textures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J]. Applied Surface Science, 2020, 509: 145182.
[19] ZHANG L, XIE J, GUO R B, et al. Precision and mirror micro-grinding of micro-lens array on macro-freeform glass substrate for micro-photovoltaic performances[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1–4): 87–96.
[20] ZHANG S J, TO S, ZHU Z W, et al. A review of fly cutting applied to surface generation in ultraprecision machining[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 13–27.
[21] FANG F Z, LIU Y C. On minimum exit-burr in micro cutting[J]. Journal of Micromechanics and Microengineering, 2004, 14(7): 984–988.
[22] WU Y, PENG W, LIU Y. A novel fabrication method for micro optical waveguide mold based on fly-cutting technology[J]. Optik, 2013, 124(9): 867–869.
[23] DONG X, ZHOU T, PANG S, et al. Comparison of fly cutting and transverse planing for micropyramid array machining on nickel phosphorus plating[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5–8): 2481–2489.
[24] HE Y, ZHOU T, DONG X, et al. Generation of high-saturation two-level iridescent textures by vibration-assisted fly cutting[J]. Materials and Design, 2020, 193: 108839.
[25] RAHMAN A, ASHRAF A, XIN H, et al. Sub-50-nm self-assembled nanotextures for enhanced broadband anti-reflection in silicon solar cells[J]. Nature Communications, 2015, 6: 1–6.
[26] PETER AMALATHAS A, ALKAISI M M. Efficient light trapping nanopyramid textures for solar cells patterned using uv nanoimprint lithography[J]. Materials Science in Semiconductor Processing, 2017, 57: 54–58.58
[27] JIAO F, HUANG Q, REN W, et al. Enhanced performance for solar cells with moth-eye structure fabricated by uv nanoimprint lithography[J]. Microelectronic Engineering, 2013, 103: 126–130.
[28] WANG H, LIANG Y, CHENG S, et al. Bio-inspired nanostructures for enhanced light management[J]. Journal of Vacuum Science & Technology B, 2017, 35(6): 06GJ02.
[29] HUANG Z, YANG S, ZHANG H, et al. replication of leaf surface textures for light harvesting[J]. Scientific Reports, 2015, 5: 1–10.
[30] FAN P, BAI B, ZHONG M, et al. General strategy toward dual-scale-controlled metallic micronano hybrid textures with ultralow reflectance[J]. ACS Nano, 2017, 11(7): 7401–7408.
[31] JALIL S A, LAI B, ELKABBASH M, et al. Spectral absorption control of femtosecond lasertreated metals and application in solar-thermal devices[J]. Light: Science and Applications, 2020, 9(1):14.
[32] LOU R, ZHANG G, LI G, et al. Design and fabrication of dual-scale broadband antireflective textures on metal surfaces by using nanosecond and femtosecond lasers[J]. Micromachines, 2020, 11(1):20.
[33] BIRNBAUM M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1965, 36(11): 3688–3689.
[34] WANG J, GUO C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Applied Physics Letters, 2005, 87(25): 1–3.
[35] ZHENG J, HUANG J, XU S. Multiscale micro-/nanotextures on single crystalline sic fabricated by hybridly polarized femtosecond laser[J]. Optics and Lasers in Engineering, 2020, 127: 105940.
[36] WANG L, CHEN Q-D, CAO X-W, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 2017, 6(12):e17112-e17112.
[37] HONG L, RUSLI, WANG X C, et al. Femtosecond laser fabrication of large-area periodic surface ripple structure on si substrate[J]. Applied Surface Science, 2014, 297: 134–138.
[38] GRANADOS E, MARTINEZ-CALDERON M, GOMEZ M, et al. Photonic textures in diamond based on femtosecond uv laser induced periodic surface structuring (LIPSS)[J]. Optics Express, 2017, 25(13): 15330.
[39] LIU R, ZHANG D, LI Z. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical lipss nanostructuring for tunable antireflectance and iridescence applications[J]. Journal of Materials Science and Technology, 2021, 89: 179–185.
[40] PARMAR V, SHIN Y C. Wideband anti-reflective silicon surface textures fabricated by femtosecond laser texturing[J]. Applied Surface Science, 2018, 459: 86–91.
[41] MARTÍNEZ-CALDERON M, RODRÍGUEZ A, DIAS-PONTE A, et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical textures fabricated by combining ordered microtextures and LIPSS[J]. Applied Surface Science, 2016, 374: 81–89.59
[42] FANG Y, YONG J, CHEN F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic pdms surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1–8.
[43] TAKASE R, KODAMA S, SHIMADA K, et al. study on the creation of fine periodic structure on V-shaped groove with short-pulsed laser[J]. International Journal of Automation Technology, 2020, 14(4): 601–613.
[44] KODAMA S, YAMAGUCHI H, SHIMADA K, et al. Control of short-pulsed laser induced periodic surface textures with machining -picosecond laser nanotexturing with magnetic abrasive finishing-[J]. Precision Engineering, 2019, 60: 428–436.
[45] ZHAO Z, ZHAO B, LEI Y, et al. Laser-induced regular nanostructure chains within microgrooves of fe-based metallic glass[J]. Applied Surface Science, 2020, 529: 147156.
[46] ZHAO Z, XIA C, YANG J. Regular nanowire formation on fe-based metal glass by manipulation of surface waves[J]. nanomaterials, 2021.
[47] ACKERL N, BOERNER P, WEGENER K. Toward application of hierarchical textures by ultrashort pulsed laser ablation[J]. Journal of Laser Applications, 2019, 31(2): 022501.
[48] ZHENG X, ZHAO B, YANG J, et al. Noncollinear excitation of surface plasmons for triangular structure formation on cr surfaces by femtosecond lasers[J]. Applied Surface Science, 2020, 507: 144932.
[49] LIU Y H, TSENG Y K, CHENG C W. Direct fabrication of rotational femtosecond laser-induced periodic surface structure on a tilted stainless steel surface[J]. Optics and Laser Technology, 2021, 134: 106648.
[50] AUSTIN D R, KAFKA K R P, TRENDAFILOV S, et al. Laser induced periodic surface structure formation in germanium by strong field mid ir laser solid interaction at oblique incidence[J]. Optics Express, 2015, 23(15): 19522.
[51] 郑建. 飞秒矢量光束生成及其微纳加工应用研究[D]. 哈尔滨工业大学, 2020.
[52] GREGORČIČ P, SEDLAČEK M, PODGORNIK B, et al. Formation of laser-induced periodic surface textures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations[J]. Applied Surface Science, 2016, 387: 698–706.
[53] S. I. ANISIMOV, B. L. KAPELIOVICH and T L P. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Revue de Physique Appliquée, 1977, 12(5): 789–796.
[54] EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 μm[J]. Applied Physics Letters, 1973, 23(11): 598–600.
[55] VAN DRIEL H M, SIPE J E, YOUNG J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Physical Review Letters, 1982, 49(26): 1955–1958.
[56] REIF J, VARLAMOVA O, COSTACHE F. Femtosecond laser induced nanostructure formation: self-organization control parameters[J]. Applied Physics A: Materials Science and Processing, 2008, 92(4): 1019–1024.60
[57] HUANG M, ZHAO F, CHENG Y, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062–4070.
[58] BONSE J, ROSENFELD A, KRÜGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface textures upon irradiation of silicon by femtosecond- laser pulses[J]. Journal of Applied Physics, 2009, 106(10):104910.
[59] ZHANG C-Y, YAO J-W, LI C-Q, et al. Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanotextures[J]. Optics Express, 2013, 21(4): 4439.
[60] ZHANG C-Y, YAO J-W, LIU H-Y, et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses[J]. Optics Letters, 2012, 37(6): 1106.
[61] CLAPHAM P B M C H. Reduction of lens reflexion by the "moth eye" principle[J]. Nature, 1973, 244: 281–282.
[62] YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307.
[63] ZHANG D, XIANG Y, CHEN J, et al. Extending the propagation distance of a silver nanowire plasmonic waveguide with a dielectric multilayer substrate[J]. Nano Letters, 2018, 18(2): 1152–1158.
[64] TAN H, LI S, FAN W Y. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example[J]. Journal of Physical Chemistry B, 2006, 110(32): 15812–15816.
[65] DONG S, ZHANG J, JIAO H, et al. Nanopillars assisted multilayer anti-reflection coating for photovoltaics with multiple bandgaps[J]. Applied Physics Letters, 2019, 115(13):133106.
[66] SPINELLI P, HEBBINK M, DE WAELE R, et al. Optical impedance matching using coupled plasmonic nanoparticle arrays[J]. Nano Letters, 2011, 11(4): 1760–1765.
[67] BUTUN S, AYDIN K. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers[J]. Optics Express, 2014, 22(16): 19457.
[68] 黄小丹. 金属纳米颗粒与纳米柱阵列复合结构的光[D]. 东南大学, 2018.
[69] MERTZ J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description jerome[J]. Journal of the Optical Society of America B, 2000, 17(11): 1906–1913.
[70] AHN Y, FARRIS T N, CHANDRASEKAR S. Sliding microindentation fracture of brittle materials: role of elastic stress fields[J]. Mechanics of Materials, 1998, 29(3–4): 143–152.
[71] DONG X, ZHOU T, PANG S, et al. Defect analysis in microgroove machining of nickelphosphide plating by small cross-angle microgrooving[J]. Journal of Nanomaterials, 2018, 2018: 1-9.
[72] WOO J-C, BAEK N S, KIM J Y, et al. The periodically negative semi-pyramid nanostructured polymer layer for broadband anti-reflection effect[J]. RSC Advances, 2012, 2(20): 7677.
修改评论