中文版 | English
题名

多尺度微纳复合光功能织构的飞秒激光加工技术研究

姓名
姓名拼音
WANG Xuewen
学号
12032440
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王敏
导师单位
深港微电子学院
论文答辩日期
2020-05-07
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  抗反射织构作为一种功能性织构,在光伏电池、光电探测器等领域 有着广泛的应用。宽谱抗反射作为光学抗反射织构研究的重要目标之一,具有重要的理论研究及应用价值。微纳复合织构是实现抗反射功能的主要 方法之一,但是现有制造技术对复合织构的微米和纳米尺度几何特征的调控能力依然有限。
  激光诱导周期性表面结构(Laser Induced Periodic Surface Structure, LIPSS)作为一种被广泛关注的激光弱烧蚀状态下的亚波长织构,具有对材料本身织构几何精度影响小、对材料的选择性低和制备工艺简单等优点,常用于抗反射织构的研究。但仅通过单一尺度的亚波长织构很难满足在宽波段内的高效抗反射性能。多尺度微纳复合织构理论上能综合微米和纳米织构的优势,更容易实现高效的抗反射性能。因此,本课题从宽谱抗反射多尺度微纳复合织构的制造方法出发,旨在利用飞切加工的方法高效制备大面积 微米织构阵列,结合飞秒激光诱导周期性纳米织构的方法,实现形貌可控的跨微纳尺度复合织构的高效可控制备。
  本课题首先以微米 V 型槽为基础,利用线光斑系统性地分析了激光偏振、激光能量密度和脉冲重叠率等激光参数对复杂表面上制备纳米织构形貌的影响和演化规律。结果表明,偏振方向的变化影响纳米织构的类型,调整激光参数可实现纳米光栅和纳米孔阵织构的可控制备。基于超快激光辐照在微槽表面产生的干涉增强以及与激发表面等离极化激元波的光场耦合等近场光学现象,探究并解释 V 型槽表面二级纳米织构的形成机理及演化规律,并实现不同微纳复合结构的可控制备手段。
  利用时域有限差分(Finite Difference Time Domain, FDTD)算法对不同微纳复合织构的抗反射性能进行分析,从仿真角度探究包括槽深及纳米织构类型等微纳织构参数对织构抗反射性能的影响,从而获取高效宽谱抗反射织构的理论参数。
  基于上述仿真结果,进行微纳复合织构制备。通过搭建飞切加工平台研究主轴转速和刀具进给速度对最大切削厚度的影响,并获取微槽织构的实验加工参数。基于上述微纳织构的制备研究,在镍磷合金表面实现微纳 复合织构的大面积高效制备,并利用转印技术实现跨尺度复合微纳织构在 聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)表面的复制。通过在波长 300 nm - 2500 nm 范围内的宽波段光谱测试,验证该方法制备的微纳织 构的宽谱抗反射的效果。测试结果表明,相比于光滑 PDMS 表面,5 μm V 型槽阵列相比与光滑平面平均反射率降低 26.82%5 μm V 型槽复合 孔阵织构的抗反射性能提高 48.7%
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] RONG W, ZHANG H, MAO Z, et al. Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622: 126712.
[2] ZHANG X, LIU X, LAAKSO J, et al. Easy-to-clean property and durability of superhydrophobic flaky γ-alumina coating on stainless steel in field test at a paper machine[J]. Applied Surface Science, 2012, 258(7): 3102–3108.
[3] WANG Z, ZHAO Q Z. Friction reduction of steel by laser-induced periodic surface nanotextures with atomic layer deposited TiO2 coating[J]. Surface and Coatings Technology, 2018, 344: 269–275.
[4] HSIUNG B K, SIDDIQUE R H, STAVENGA D G, et al. Rainbow peacock spiders inspire miniature super-iridescent optics[J]. Nature Communications, 2017, 8(1): 1–8.
[5] DOSTOVALOV A, BRONNIKOV K, KOROLKOV V, et al. Hierarchical anti-reflective laser￾induced periodic surface textures (LIPSSs) on amorphous Si films for sensing applications[J]. Nanoscale, 2020, 12(25): 13431–13441.
[6] ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062–1066.
[7] MALSHE A P, BAPAT S, RAJURKAR K P, et al. Bio-inspired textures for functional applications[J]. CIRP Annals, 2018, 67(2): 627–650.
[8] CHATTOPADHYAY S, HUANG Y F, JEN Y J, et al. Anti-reflecting and photonic nanotextures[J]. Materials Science and Engineering R, 2010, 69(1–3): 1–35.
[9] GONZALEZ F L, GORDON M J. Bio-inspired, sub-wavelength surface textures for ultra￾broadband, omni-directional anti-reflection in the mid and far ir[J]. Optics Express, 2014, 22(11): 12808.
[10] SHI N N, TSAI C C, CAMINO F, et al. Keeping cool: enhanced optical reflection and heat dissipation in saharan silver ants[J]. Science, 2015, 349(6245): 298–301.
[11] HAN Z, MU Z, LI B, et al. A high-transmission, multiple antireflective surface inspired from bilayer 3D ultrafine hierarchical textures in butterfly wing scales[J]. Small, 2016, 12(6): 713–720.
[12] RICHARDS B S. Single-material TiO2 double-layer anti-reflection coatings[J]. Solar Energy Materials and Solar Cells, 2003, 79(3): 369–390.57
[13] ZHANG F, WANG H, WANG C, et al. Direct femtosecond laser writing of inverted array for broadband anti-reflection in the far-infrared[J]. Optics and Lasers in Engineering, 2020, 129: 106062.
[14] LEON J J D, HISZPANSKI A M, BOND T C, et al. Design rules for tailoring anti-reflection properties of hierarchical optical textures[J]. Advanced Optical Materials, 2017, 5(13):1700080.
[15] ZOU T, ZHAO B, XIN W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science and Applications, 2020, 9(1):69.
[16] SHEN L, DU H, YANG J, et al. Optimized broad band and quasi-omnidirectional anti-reflection properties with moth-eye textures by low cost replica molding[J]. Applied Surface Science, 2015, 325: 100–104.
[17] YANG S, ZHANG L, GE P. Experimental study of the pyramidal texturization on the surface of photovoltaic silicon with cemented carbide micro-milling tool[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(9–12): 3187–3196.
[18] CHEN T, WANG W, TAO T, et al. Multi-scale micro-nano textures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J]. Applied Surface Science, 2020, 509: 145182.
[19] ZHANG L, XIE J, GUO R B, et al. Precision and mirror micro-grinding of micro-lens array on macro-freeform glass substrate for micro-photovoltaic performances[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1–4): 87–96.
[20] ZHANG S J, TO S, ZHU Z W, et al. A review of fly cutting applied to surface generation in ultra￾precision machining[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 13–27.
[21] FANG F Z, LIU Y C. On minimum exit-burr in micro cutting[J]. Journal of Micromechanics and Microengineering, 2004, 14(7): 984–988.
[22] WU Y, PENG W, LIU Y. A novel fabrication method for micro optical waveguide mold based on fly-cutting technology[J]. Optik, 2013, 124(9): 867–869.
[23] DONG X, ZHOU T, PANG S, et al. Comparison of fly cutting and transverse planing for micropyramid array machining on nickel phosphorus plating[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5–8): 2481–2489.
[24] HE Y, ZHOU T, DONG X, et al. Generation of high-saturation two-level iridescent textures by vibration-assisted fly cutting[J]. Materials and Design, 2020, 193: 108839.
[25] RAHMAN A, ASHRAF A, XIN H, et al. Sub-50-nm self-assembled nanotextures for enhanced broadband anti-reflection in silicon solar cells[J]. Nature Communications, 2015, 6: 1–6.
[26] PETER AMALATHAS A, ALKAISI M M. Efficient light trapping nanopyramid textures for solar cells patterned using uv nanoimprint lithography[J]. Materials Science in Semiconductor Processing, 2017, 57: 54–58.58
[27] JIAO F, HUANG Q, REN W, et al. Enhanced performance for solar cells with moth-eye structure fabricated by uv nanoimprint lithography[J]. Microelectronic Engineering, 2013, 103: 126–130.
[28] WANG H, LIANG Y, CHENG S, et al. Bio-inspired nanostructures for enhanced light management[J]. Journal of Vacuum Science & Technology B, 2017, 35(6): 06GJ02.
[29] HUANG Z, YANG S, ZHANG H, et al. replication of leaf surface textures for light harvesting[J]. Scientific Reports, 2015, 5: 1–10.
[30] FAN P, BAI B, ZHONG M, et al. General strategy toward dual-scale-controlled metallic micro￾nano hybrid textures with ultralow reflectance[J]. ACS Nano, 2017, 11(7): 7401–7408.
[31] JALIL S A, LAI B, ELKABBASH M, et al. Spectral absorption control of femtosecond laser￾treated metals and application in solar-thermal devices[J]. Light: Science and Applications, 2020, 9(1):14.
[32] LOU R, ZHANG G, LI G, et al. Design and fabrication of dual-scale broadband antireflective textures on metal surfaces by using nanosecond and femtosecond lasers[J]. Micromachines, 2020, 11(1):20.
[33] BIRNBAUM M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1965, 36(11): 3688–3689.
[34] WANG J, GUO C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Applied Physics Letters, 2005, 87(25): 1–3.
[35] ZHENG J, HUANG J, XU S. Multiscale micro-/nanotextures on single crystalline sic fabricated by hybridly polarized femtosecond laser[J]. Optics and Lasers in Engineering, 2020, 127: 105940.
[36] WANG L, CHEN Q-D, CAO X-W, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 2017, 6(12):e17112-e17112.
[37] HONG L, RUSLI, WANG X C, et al. Femtosecond laser fabrication of large-area periodic surface ripple structure on si substrate[J]. Applied Surface Science, 2014, 297: 134–138.
[38] GRANADOS E, MARTINEZ-CALDERON M, GOMEZ M, et al. Photonic textures in diamond based on femtosecond uv laser induced periodic surface structuring (LIPSS)[J]. Optics Express, 2017, 25(13): 15330.
[39] LIU R, ZHANG D, LI Z. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical lipss nanostructuring for tunable antireflectance and iridescence applications[J]. Journal of Materials Science and Technology, 2021, 89: 179–185.
[40] PARMAR V, SHIN Y C. Wideband anti-reflective silicon surface textures fabricated by femtosecond laser texturing[J]. Applied Surface Science, 2018, 459: 86–91.
[41] MARTÍNEZ-CALDERON M, RODRÍGUEZ A, DIAS-PONTE A, et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical textures fabricated by combining ordered microtextures and LIPSS[J]. Applied Surface Science, 2016, 374: 81–89.59
[42] FANG Y, YONG J, CHEN F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic pdms surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1–8.
[43] TAKASE R, KODAMA S, SHIMADA K, et al. study on the creation of fine periodic structure on V-shaped groove with short-pulsed laser[J]. International Journal of Automation Technology, 2020, 14(4): 601–613.
[44] KODAMA S, YAMAGUCHI H, SHIMADA K, et al. Control of short-pulsed laser induced periodic surface textures with machining -picosecond laser nanotexturing with magnetic abrasive finishing-[J]. Precision Engineering, 2019, 60: 428–436.
[45] ZHAO Z, ZHAO B, LEI Y, et al. Laser-induced regular nanostructure chains within microgrooves of fe-based metallic glass[J]. Applied Surface Science, 2020, 529: 147156.
[46] ZHAO Z, XIA C, YANG J. Regular nanowire formation on fe-based metal glass by manipulation of surface waves[J]. nanomaterials, 2021.
[47] ACKERL N, BOERNER P, WEGENER K. Toward application of hierarchical textures by ultrashort pulsed laser ablation[J]. Journal of Laser Applications, 2019, 31(2): 022501.
[48] ZHENG X, ZHAO B, YANG J, et al. Noncollinear excitation of surface plasmons for triangular structure formation on cr surfaces by femtosecond lasers[J]. Applied Surface Science, 2020, 507: 144932.
[49] LIU Y H, TSENG Y K, CHENG C W. Direct fabrication of rotational femtosecond laser-induced periodic surface structure on a tilted stainless steel surface[J]. Optics and Laser Technology, 2021, 134: 106648.
[50] AUSTIN D R, KAFKA K R P, TRENDAFILOV S, et al. Laser induced periodic surface structure formation in germanium by strong field mid ir laser solid interaction at oblique incidence[J]. Optics Express, 2015, 23(15): 19522.
[51] 郑建. 飞秒矢量光束生成及其微纳加工应用研究[D]. 哈尔滨工业大学, 2020.
[52] GREGORČIČ P, SEDLAČEK M, PODGORNIK B, et al. Formation of laser-induced periodic surface textures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations[J]. Applied Surface Science, 2016, 387: 698–706.
[53] S. I. ANISIMOV, B. L. KAPELIOVICH and T L P. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Revue de Physique Appliquée, 1977, 12(5): 789–796.
[54] EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 μm[J]. Applied Physics Letters, 1973, 23(11): 598–600.
[55] VAN DRIEL H M, SIPE J E, YOUNG J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Physical Review Letters, 1982, 49(26): 1955–1958.
[56] REIF J, VARLAMOVA O, COSTACHE F. Femtosecond laser induced nanostructure formation: self-organization control parameters[J]. Applied Physics A: Materials Science and Processing, 2008, 92(4): 1019–1024.60
[57] HUANG M, ZHAO F, CHENG Y, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062–4070.
[58] BONSE J, ROSENFELD A, KRÜGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface textures upon irradiation of silicon by femtosecond- laser pulses[J]. Journal of Applied Physics, 2009, 106(10):104910.
[59] ZHANG C-Y, YAO J-W, LI C-Q, et al. Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanotextures[J]. Optics Express, 2013, 21(4): 4439.
[60] ZHANG C-Y, YAO J-W, LIU H-Y, et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses[J]. Optics Letters, 2012, 37(6): 1106.
[61] CLAPHAM P B M C H. Reduction of lens reflexion by the "moth eye" principle[J]. Nature, 1973, 244: 281–282.
[62] YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307.
[63] ZHANG D, XIANG Y, CHEN J, et al. Extending the propagation distance of a silver nanowire plasmonic waveguide with a dielectric multilayer substrate[J]. Nano Letters, 2018, 18(2): 1152–1158.
[64] TAN H, LI S, FAN W Y. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example[J]. Journal of Physical Chemistry B, 2006, 110(32): 15812–15816.
[65] DONG S, ZHANG J, JIAO H, et al. Nanopillars assisted multilayer anti-reflection coating for photovoltaics with multiple bandgaps[J]. Applied Physics Letters, 2019, 115(13):133106.
[66] SPINELLI P, HEBBINK M, DE WAELE R, et al. Optical impedance matching using coupled plasmonic nanoparticle arrays[J]. Nano Letters, 2011, 11(4): 1760–1765.
[67] BUTUN S, AYDIN K. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers[J]. Optics Express, 2014, 22(16): 19457.
[68] 黄小丹. 金属纳米颗粒与纳米柱阵列复合结构的光[D]. 东南大学, 2018.
[69] MERTZ J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description jerome[J]. Journal of the Optical Society of America B, 2000, 17(11): 1906–1913.
[70] AHN Y, FARRIS T N, CHANDRASEKAR S. Sliding microindentation fracture of brittle materials: role of elastic stress fields[J]. Mechanics of Materials, 1998, 29(3–4): 143–152.
[71] DONG X, ZHOU T, PANG S, et al. Defect analysis in microgroove machining of nickelphosphide plating by small cross-angle microgrooving[J]. Journal of Nanomaterials, 2018, 2018: 1-9.
[72] WOO J-C, BAEK N S, KIM J Y, et al. The periodically negative semi-pyramid nanostructured polymer layer for broadband anti-reflection effect[J]. RSC Advances, 2012, 2(20): 7677.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TN249
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335779
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
王学文. 多尺度微纳复合光功能织构的飞秒激光加工技术研究[D]. 深圳. 南方科技大学,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032440-王学文-机械与能源工程(5046KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王学文]的文章
百度学术
百度学术中相似的文章
[王学文]的文章
必应学术
必应学术中相似的文章
[王学文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。