[1] RYDNING D R-J G-J, REINSEL J, GANTZ J. The digitization of the world from edge to core[J]. Framingham: International Data Corporation, 2018: 16.
[2] ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366-370.
[3] DE SILVA P Y, GANEGODA G U. New Trends of Digital Data Storage in DNA[J]. BioMed Research International, 2016, 2016: 8072463.
[4] CEZE L, NIVALA J, STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456-466.
[5] ORGANICK L, ANG S D, CHEN Y-J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242-248.
[6] GRASS R N, HECKEL R, PUDDU M, et al. Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes[J]. Angewandte Chemie International Edition, 2015, 54(8): 2552-2555.
[7] CLUZEL P, LEBRUN A, HELLER C, et al. DNA: An Extensible Molecule[J]. Science, 1996, 271(5250): 792-794.
[8] BUSTAMANTE C, SMITH S B, LIPHARDT J, et al. Single-molecule studies of DNA mechanics[J]. Current Opinion in Structural Biology, 2000, 10(3): 279-285.
[9] YAKOVCHUK P, PROTOZANOVA E, FRANK-KAMENETSKII M D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix[J]. Nucleic Acids Research, 2006, 34(2): 564-574.
[10] AND T A K, BEBENEK K. DNA Replication Fidelity[J]. Annual Review of Biochemistry, 2000, 69(1): 497-529.
[11] BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-Based Archival Storage System, July[C]. Atlanta, Georgia, USA: Association for Computing Machinery, 2016: 637–649.
[12] MEISER L C, NGUYEN B H, CHEN Y-J, et al. Synthetic DNA applications in information technology[J]. Nature Communications, 2022, 13(1): 352.
[13] WANG Y, HE L, JIANG S, et al. Failure Prediction of Hard Disk Drives Based on Adaptive Rao–Blackwellized Particle Filter Error Tracking Method[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 913-921.
[14] RUTTEN M G T A, VAANDRAGER F W, ELEMANS J A A W, et al. Encoding information into polymers[J]. Nature Reviews Chemistry, 2018, 2(11): 365-381.
[15] ALLENTOFT M E, COLLINS M, HARKER D, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1748): 4724-4733.
[16] NEIMAN M. On the molecular memory systems and the directed mutations[J]. Radiotekhnika, 1965, 6: 1-8.
[17] CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533-534.
[18] BANCROFT C, BOWLER T, BLOOM B, et al. Long-Term Storage of Information in DNA[J]. Science, 2001, 293(5536): 1763-1765.
[19] SANGER F. SEQUENCES, SEQUENCES, AND SEQUENCES[J]. Annual Review of Biochemistry, 1988, 57(1): 1-29.
[20] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences, 1977, 74(12): 5463-5467.
[21] STADEN R. A strategy of DNA sequencing employing computer programs[J]. Nucleic Acids Research, 1979, 6(7): 2601-2610.
[22] HU T, CHITNIS N, MONOS D, et al. Next-generation sequencing technologies: An overview[J]. Human Immunology, 2021, 82(11): 801-811.
[23] MARDIS E R. Next-Generation Sequencing Platforms[J]. Annual Review of Analytical Chemistry, 2013, 6(1): 287-303.
[24] LU H, GIORDANO F, NING Z. Oxford Nanopore MinION Sequencing and Genome Assembly[J]. Genomics, Proteomics & Bioinformatics, 2016, 14(5): 265-279.
[25] MANI I. Recent development in DNA synthesis technology[J]. New Frontiers and Applications of Synthetic Biology, 2022.
[26] KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: technologies and applications[J]. Nature Methods, 2014, 11(5): 499-507.
[27] KA. W. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)[EB/OL] 2022/03/10]. www.genome.gov/sequencingcostsdata.
[28] DONG Y, SUN F, PING Z, et al. DNA storage: research landscape and future prospects[J]. National Science Review, 2020, 7(6): 1092-1107.
[29] YOO H-B, LIM H, YANG I, et al. Flow cytometric investigation on degradation of macro-DNA by common laboratory manipulations[J]. Journal of Biophysical Chemistry, 2011, 02: 102-111.
[30] MATANGE K, TUCK J M, KEUNG A J. DNA stability: a central design consideration for DNA data storage systems[J]. Nature Communications, 2021, 12(1): 1358.
[31] MIKUTIS G, SCHMID L, STARK W J, et al. Length-dependent DNA degradation kinetic model: Decay compensation in DNA tracer concentration measurements[J]. AIChE Journal, 2019, 65(1): 40-48.
[32] SHAO W, KHIN S, KOPP W C. Characterization of effect of repeated freeze and thaw cycles on stability of genomic DNA using pulsed field gel electrophoresis[J]. Biopreserv Biobank, 2012, 10(1): 4-11.
[33] LIU Y, ZHENG Z, GONG H, et al. DNA preservation in silk[J]. Biomater Sci, 2017, 5(7): 1279-1292.
[34] CHEN W D, KOHLL A X, NGUYEN B H, et al. Combining Data Longevity with High Storage Capacity—Layer-by-Layer DNA Encapsulated in Magnetic Nanoparticles[J]. Advanced Functional Materials, 2019, 29(28): 1901672.
[35] SETLOW P, EICHENBERGER P, DRIKS A. Spore Resistance Properties[J]. Microbiology Spectrum, 2014, 2(5): 2.5.11.
[36] CORTESãO M, FUCHS F M, COMMICHAU F M, et al. Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions[J]. Front Microbiol, 2019, 10.
[37] GOLDMAN N, BERTONE P, CHEN S, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77-80.
[38] LUO Y, KORZA G, DEMARCO A M, et al. Properties of spores of Bacillus subtilis with or without a transposon that decreases spore germination and increases spore wet heat resistance[J]. J Appl Microbiol, 2021, 131(6): 2918-2928.
[39] GOULD G W. History of science – spores[J]. Journal of Applied Microbiology, 2006, 101(3): 507-513.
[40] AMADOR ESPEJO G G, HERNáNDEZ-HERRERO M M, JUAN B, et al. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization[J]. Food Microbiol, 2014, 44: 204-210.
[41] NICHOLSON W L, MUNAKATA N, HORNECK G, et al. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments[J]. Microbiol Mol Biol Rev, 2000, 64(3): 548-572.
[42] SETLOW B, SETLOW P. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat[J]. Appl and Environ Microbiol, 1995, 61(7): 2787-2790.
[43] LEE KI S, BUMBACA D, KOSMAN J, et al. Structure of a protein–DNA complex essential for DNA protection in spores of Bacillus species[J]. Proceedings of the National Academy of Sciences, 2008, 105(8): 2806-2811.
[44] MARQUIS R E. Bacterial Spores - resistance, dormancy and water status[M]. // REID D S. The Properties of Water in Foods ISOPOW 6. City: Springer, 1998: 486-504.
[45] PONNURAJ K, ROWLAND S, NESSI C, et al. Crystal structure of a novel germination protease from spores of Bacillus megaterium: structural arrangement and zymogen activation11Edited by I. A. Wilson[J]. Journal of Molecular Biology, 2000, 300(1): 1-10.
[46] HUGHES R A, ELLINGTON A D. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology[J]. Cold Spring Harb Persp Biol, 2017, 9(1): a023812.
[47] BENNER S A, SISMOUR A M. Synthetic biology[J]. Nat Rev Genetic, 2005, 6(7): 533-543.
[48] SHIPMAN S L, NIVALA J, MACKLIS J D, et al. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663): 345-349.
[49] CHEN W, HAN M, ZHOU J, et al. An artificial chromosome for data storage[J]. National Science Review, 2021, 8(5): 028.
[50] VENTER J C, GIBSON DANIEL G, SMITH HAMILTON O, et al. METHODS FOR IN VITRO JOINING AND COMBINATORIAL ASSEMBLY OF NUCLEIC ACID MOLECULES. EP20090711127[P/OL]. 2009-.https://europepmc.org/article/PAT/EP2255013.
[51] DE KOK S, STANTON L H, SLABY T, et al. Rapid and reliable DNA assembly via ligase cycling reaction[J]. ACS SynBio, 2014, 3(2): 97-106.
[52] HORTON R M, CAI Z, HO S N, et al. Gene Splicing by Overlap Extension: Tailor-Made Genes Using the Polymerase Chain Reaction[J]. BioTechniques, 2013, 54(3): 129-133.
[53] AFRASIAB I, KEAWSOMPONG S, KONGSAEREE P, et al. Formulation of an Efficient Combinatorial Cellulase Cocktail by Comparative Analysis of Gibson Assembly and NEBuilder HiFi DNA Assembly Modus Operandi[J]. International Journal on Emerging Technologies, 2020, 11: 490-495.
[54] ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11): e3647.
[55] IMLAY J A. Transcription Factors That Defend Bacteria Against Reactive Oxygen Species[J]. Annual Review of Microbiology, 2015, 69(1): 93-108.
[56] NAONO S, GROS F. On the mechanism of transcription of the lambda genome during induction of lysogenic bacteria[J]. Journal of Molecular Biology, 1967, 25(3): 517-536.
[57] YASBIN R E, YOUNG F E. Transduction in Bacillus subtilis by bacteriophage SPP1[J]. J Virology, 1974, 14(6): 1343-1348.
[58] ZHANG X-Z, ZHANG Y H P. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis[J]. Micro Biotechnology, 2011, 4(1): 98-105.
[59] MCDONALD I R, RILEY P W, SHARP R J, et al. Factors affecting the electroporation of Bacillus subtilis[J]. Journal of Applied Bacteriology, 1995, 79(2): 213-218.
[60] ZHANG Z, DING Z-T, SHU D, et al. Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK[J/OL]. IntJ Mol Sci, 2015,16(4): 7334-7351.
[61] KO K S, KIM J-W, KIM J-M, et al. Population Structure of the Bacillus cereus Group as Determined by Sequence Analysis of Six Housekeeping Genes and the plcR Gene[J]. Infection and Immunity, 2004, 72(9): 5253-5261.
[62] SOROKULOVA I B, KRUMNOW A A, PATHIRANA S, et al. Novel methods for storage stability and release of Bacillus spores[J]. Biotechnology Progress, 2008, 24(5): 1147-1153.
[63] WEI Y-H, LEE H-C. Oxidative Stress, Mitochondrial DNA Mutation, and Impairment of Antioxidant Enzymes in Aging[J]. Experimental Biology and Medicine, 2002, 227(9): 671-682.
[64] LEE H-C, WEI Y-H. Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging[J]. Experimental Biology and Medicine, 2007, 232(5): 592-606.
[65] PFEIFER G P, YOU Y-H, BESARATINIA A. Mutations induced by ultraviolet light[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 571(1): 19-31.
[66] WITKIN E M. ULTRAVIOLET-INDUCED MUTATION AND DNA REPAIR[J]. Annual Review of Genetics, 1969, 3(1): 525-552.
修改评论