[1] KUZNETSOV A I, EVLYUKHIN A B, GOŅALVES M R, et al. Laser fabrication of large-scale nanoparticle arrays for sensing applications[J]. ACS Nano, 2011, 5(6): 4843–4849.
[2] PARK K C, CHOI H J, CHANG C H, et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity[J]. ACS Nano, 2012, 6(5): 3789–3799.
[3] CAI J, QI L. Recent advances in antireflective surfaces based on nanostructure arrays[J]. Materials Horizons, 2015, 2(1): 37–53.
[4] PARK H J, CHO S, KIM M, et al. Carboxylic acid-functionalized, graphitic layer-coated three-dimensional SERS substrate for label-free analysis of Alzheimer’s disease biomarkers[J]. Nano Letters, 2020, 20(4): 2576–2584.
[5] DENG X, BRAUN G B, LIU S, et al. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy[J]. Nano Letters, 2010, 10(5): 1780–1786.
[6] WANG W, YANG Q, FAN F, et al. Light propagation in curved silver nanowire plasmonic waveguides[J]. Nano Letters, 2011, 11(4): 1603–1608.
[7] LIN H Y, CHEN H A, LIN H N. Fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing[J]. Analytical Chemistry, 2008, 80(6): 1937–1941.
[8] ZHOU W, BAI S, MA Y, et al. Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength[J]. ACS Applied Materials and Interfaces, 2016, 8(37): 24887–24892.
[9] RUFFINO F, GRIMALDI M G. Nanostructuration of thin metal films by pulsed laser irradiations: a review[J]. Nanomaterials, 2019, 9(8): 1133.
[10] BAE W G, KIM H N, KIM D, et al. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy[J]. Advanced Materials, 2014, 26(5): 675–700.
[11] HE G C, LU H, DONG X Z, et al. electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer[J]. RSC Advances, 2018, 8(44): 24893–24899.
[12] REN X L, ZHENG M L, JIN F, et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction[J]. Journal of Physical Chemistry C, 2016, 120(46): 26532–26538.
[13] HONG S, YEO J, KIM G, et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink[J]. ACS Nano, 2013, 7(6): 5024–5031.
[14] OZDEMIR F S. Highly conducting patterned Pd nanowires by direct-write electron beam lithography[J]. ACS Nano, 2008, 2(3): 383–391.
[15] GAO Y, SUN S, SHI S-Q, et al. On-chip suspended gold nanowire electrode with a rough surface: fabrication and electrochemical properties[J]. Electrochimica Acta, 2019, 304: 20–29.
[16] SHI S, LU N, LU Y, et al. Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography[J]. ACS Applied Materials and Interfaces, 2011, 3(11): 4174–4179.
[17] ZHAO Z-J, HWANG S H, JEON S, et al. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and e-beam evaporation[J]. Applied Surface Science, 2017, 420: 429–438.
[18] HUJDIC J E, SARGISIAN A P, SHAO J, et al. High-density gold nanowire arrays by lithographically patterned nanowire electrodeposition[J]. Nanoscale, 2011, 3(7): 2697.
[19] XU Q, RIOUX R M, WHITESIDES G M. Fabrication of complex metallic nanostructures by nanoskiving[J]. ACS Nano, 2007, 1(3): 215–227.
[20] ASAKAWA K, KIM D Il, YAGUCHI S, et al. Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope[J]. Applied Physics Letters, 2020, 117: 211102.
[21] MCLEOD E, ARNOLD C B. Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology, 2008, 3(7): 413–417.
[22] SATOSHI K, HONG-BO S, TOMOKAZU T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412: 697–698.
[23] WOLLHOFEN R, KATZMANN J, HRELESCU C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 2013, 21(9): 10831.
[24] LIN Z, LIU H, JI L, et al. Realization of ∼10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air[J]. Nano Letters, 2020, 20(7): 4947–4952.
[25] DOSTOVALOV A V., DERRIEN T J Y, LIZUNOV S A, et al. LIPSS on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation[J]. Applied Surface Science, 2019, 491: 650–658.
[26] WANG A, JIANG L, LI X, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 2015, 27(40): 6238–6243.
[27] XU Z, JIANG L, LI X, et al. Flash ablation of tunable and deep-subwavelength nanogap by using a spatially modulated femtosecond laser pulse for plasmonic application[J]. ACS Applied Nano Materials, 2019, 2(8): 4933–4941.
[28] LYU Q, ZHAI Q, DYSON J, et al. Real-time and in-situ monitoring of H2O2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires[J]. Analytical Chemistry, 2019, 91(21): 13521–13527.
[29] DHAWAN A, DUVAL A, NAKKACH M, et al. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging[J]. Nanotechnology, 2011, 22(16): 165301.
[30] BAGLIN J E E. Ion beam nanoscale fabrication and lithography-A review[J]. Applied Surface Science, 2012, 258(9): 4103–4111.
[31] CHEN L, ZHOU Y, LI Y, et al. Microsphere enhanced optical imaging and patterning: from physics to applications[J]. Applied Physics Reviews, 2019, 6(2): 021304.
[32] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447–449.
[33] SRINIVASAN R, SUTCLIFFE E, BRAREN B. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses[J]. Applied Physics Letters, 1987, 51(16): 1285–1287.
[34] KIM B, NAM H K, WATANABE S, et al. Selective laser ablation of metal thin films using ultrashort pulses[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(3): 771–782.
[35] FANN W S, STORZ R, TOM H W K, et al. Electron thermalization in gold[J]. Physical Review B, 1992, 46(20): 13592–13595.
[36] WELLERSHOFF S-S, HOHLFELD J, GÜDDE J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 1999, 69(7): S99–S107.
[37] ALLEN P B. Theory of thermal relaxation of electrons in metals[J]. Physical Review Letters, 1987, 59(13): 1460–1463.
[38] SARAEVA I N, KUDRYASHOV S I, RUDENKO A A, et al. Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields[J]. Applied Surface Science, 2019, 470: 1018–1034.
[39] KUCHMIZHAK A A, PAVLOV D V., VITRIK O B, et al. Laser ablative fabrication of nanocrowns and nanojets on the cu supported film surface using femtosecond laser pulses[J]. Applied Surface Science, 2015, 357: 2378–2384.
[40] SIVAKUMAR M, VENKATAKRISHNAN K, TAN B. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces[J]. Nanoscale Research Letters, 2011, 6(1): 78.
[41] WANG X C, ZHENG H Y, TAN C W, et al. Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation[J]. Applied Physics Letters, 2010, 96(8): 084101.
[42] KASANI S, CURTIN K, WU N. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications[J]. Nanophotonics, 2019, 8(12): 2065–2089.
[43] XUE H, DENG G, FENG G, et al. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon[J]. Optics Letters, 2017, 42(17): 3315.
[44] KASANI S, ZHENG P, WU N. Tailoring optical properties of a large-area plasmonic gold nanoring array pattern[J]. Journal of Physical Chemistry C, 2018, 122(25): 13443–13449.
[45] RYU J, LEE S H, LEE Y H, et al. Helical structure-dependent surface-enhanced Raman spectroscopy enhancement in gold nanohelices[J]. Journal of Physical Chemistry C, 2019, 123(9): 5626–5633.
[46] YOON I, KANG T, CHOI W, et al. Single nanowire on a film as an efficient SERS-active platform[J]. Journal of the American Chemical Society, 2009, 131(2): 758–762.
[47] KANG T, YOON I, JEON K-S, et al. Creating well-defined hot spots for surface-enhanced Raman scattering by single-crystalline noble metal nanowire pairs[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7492–7496.
[48] FANG Z, FAN L, LIN C, et al. Plasmonic coupling of bow tie antennas with ag nanowire[J]. Nano Letters, 2011, 11(4): 1676–1680.
[49] CHOI S, HAN S I, KIM D, et al. High-performance stretchable conductive nanocomposites: materials, processes, and device applications[J]. Chemical Society Reviews, 2019, 48(6): 1566–1595.
[50] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare[J]. Advanced Materials, 2016, 28(22): 4338–4372.
[51] GONG S, LAI D T H, SU B, et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials, 2015, 1(4): 1400063.
[52] SOURI H, BANERJEE H, JUSUFI A, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems, 2020, 2(8): 2000039.
[53] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials, 2016, 26(11): 1678–1698.
[54] AMJADI M, PICHITPAJONGKIT A, LEE S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154–5163.
[55] WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1–19.
[56] YAO S, REN P, SONG R, et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications[J]. Advanced Materials, 2020, 32(15): 1902343.
[57] GONG S, CHENG W. One-Dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 2017, 3(3): 1600314.
[58] WANG Z, ZHANG L, LIU J, et al. Highly stretchable, sensitive, and transparent strain sensors with a controllable in-plane mesh structure[J]. ACS Applied Materials and Interfaces, 2019, 11(5): 5316–5324.
[59] TAN C, DONG Z, LI Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring[J]. Nature Communications, 2020, 11(1): 3530.
[60] LIANG B, LIN Z, CHEN W, et al. Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes[J]. Nanoscale, 2018, 10(28): 13599–13606.
[61] TANG N, ZHOU C, QU D, et al. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion[J]. Small, 2020, 16(24): 2001363.
[62] YIN F, LU H, PAN H, et al. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring[J]. Scientific Reports, 2019, 9(1): 2403.
[63] KIM K K, HONG S, CHO H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks[J]. Nano Letters, 2015, 15(8): 5240–5247.
[64] YU X, TODI A, TANG H. Bessel beam generation using a segmented deformable mirror[J]. Applied Optics, 2018, 57(16): 4677.
[65] SAHA S K, WANG D, NGUYEN V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105–109.
[66] LAZAREV G, CHEN P-J, STRAUSS J, et al. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [invited][J]. Optics Express, 2019, 27(11): 16206.
[67] LI Y, HONG M. Parallel laser micro/nano-processing for functional device fabrication[J]. Laser & Photonics Reviews, 2020, 14(3): 1900062.
[68] TANG Y, PERRIE W, SCHILLE J, et al. High-quality vector vortex arrays by holographic and geometric phase control[J]. Journal of Physics D: Applied Physics, 2020, 53(46): 465101.
[69] GOLDSTEIN D H. Polarized light: 3rd[M]. 2017.
[70] XIN J, GAO C, LI C, et al. Measuring orbital angular momentum of helical beams by spatially variable retardation plates[J]. Applied Physics B, 2012, 108(4): 703–706.
[71] HE F, XU H, CHENG Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 2010, 35(7): 1106–1108.
[72] IVANOV D S, ZHIGILEI L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Physical Review B, 2003, 68(6): 064114.
[73] SAGHEBFAR M, TEHRANI M K, DARBANI S M R, et al. Femtosecond pulse laser irradiation of gold/chromium double-layer metal film: The role of interface boundary resistance in two-temperature model simulations[J]. Thin Solid Films, 2017, 636: 464–473.
[74] GEDVILAS M, VOISIAT B, REGELSKIS K, et al. Instability-triggered transformations in thin chromium film on glass under laser irradiation[J]. Applied Surface Science, 2013, 278: 26–32.
[75] LIU H, LIN W, LIN Z, et al. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect[J]. Advanced Functional Materials, 2019, 29(42): 1903576.
[76] ZHANG L, DING J, ZHENG H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 2018, 9(1): 1481.
[77] CRITCHLEY K, KHANAL B P, GÓRZNY M L, et al. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface[J]. Advanced Materials, 2010, 22(21): 2338–2342.
[78] STEINHÖGL W, SCHINDLER G, STEINLESBERGER G, et al. Size-dependent resistivity of metallic wires in the mesoscopic range[J]. Physical Review B, 2002, 66(7): 075414.
[79] PARK S-I, AHN J, FENG X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates[J]. Advanced Functional Materials, 2008, 18(18): 2673–2684.
修改评论