中文版 | English
题名

The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review

作者
通讯作者Gu, Sai; Shi, Yuhui
发表日期
2022-05-01
DOI
发表期刊
ISSN
2199-4536
EISSN
2198-6053
摘要
Conventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000801120700002
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335816
专题工学院_计算机科学与工程系
作者单位
1.Univ Warwick, Sch Engn, Coventry, W Midlands, England
2.Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Minghan,Gu, Sai,Shi, Yuhui. The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review[J]. Complex & Intelligent Systems,2022.
APA
Zhang, Minghan,Gu, Sai,&Shi, Yuhui.(2022).The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review.Complex & Intelligent Systems.
MLA
Zhang, Minghan,et al."The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review".Complex & Intelligent Systems (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Minghan]的文章
[Gu, Sai]的文章
[Shi, Yuhui]的文章
百度学术
百度学术中相似的文章
[Zhang, Minghan]的文章
[Gu, Sai]的文章
[Shi, Yuhui]的文章
必应学术
必应学术中相似的文章
[Zhang, Minghan]的文章
[Gu, Sai]的文章
[Shi, Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。