中文版 | English
题名

面向金属增材制造的气体雾化与离心雾化粉末性能比较研究

姓名
姓名拼音
RUAN Gang
学号
12032439
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
黎兴刚
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-05-08
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    金属增材制造技术因其成形优势明显,制件性能好,在各行各业中有广阔的 应用前景。然而,因其制件成本高、工艺稳定性以及构件可重复性低,使其产品应 用研究仍然停留在实验室阶段。粉末作为金属增材制造工艺的主要原材料是解决 上述问题的关键之一。然而粉末原料特性—粉末可打印性能—3D 打印成形件性能 之间的关系尚不明确,没有形成完善的行业标准,使得粉末的开发、生产以及选择 缺乏有效的指导。因此,加强对现有工艺制备的粉末原料特性以及可打印性能的 研究对推动行业发展尤其重要。本文对主流的气体雾化以及离心雾化(包括等离 子旋转电极雾化和旋转盘雾化)两类工艺制备的粉末的性能及其可打印性能进行 比较研究,有助于推动低成本高质量金属粉末制备技术的发展,推动金属增材制 造产业化的进程。本文完成的主要工作如下:

(1)分别利用气体雾化法和等离子旋转电极雾化法制备了两种 IN718 粉末, 利用气体雾化法和旋转盘雾化法制备了两种 AlSi10Mg 粉末。分别利用图像分析 法、激光衍射法、CT 扫描、标准漏斗法、XRD 等方法对四种粉末的形貌、赘生物 指数、钝度、粒径分布、空心粉含量、粉末流动性、松装密度、粉末中物相等性能 进行定量表征。结果显示,与其对应的离心雾化粉末相比,两种材料的气体雾化 粉末整体球形度低,小颗粒的细粉体积分数高,粉末孔隙率高、流动性差、松装密 度低。

(2)在激光粉床熔融工艺中,研究激光功率以及扫描速度对试样的致密度、 表面粗糙度以及硬度的影响,确定了两种 IN718 粉末的打印工艺窗口,确定了最 佳的打印工艺参数。在最佳的打印工艺参数下,成功制备出两种性能优良的 IN718 激光粉床熔融成形试样。研究发现,虽然球形度高、粒度均匀的等离子旋转电极 雾化粉末具有更大的工艺窗口以及更稳定的成形质量,但是粉末原料特性差异对 成形件的最佳机械性能无明显影响。气体雾化试样硬度为 328 ± 16 HV,等离子旋 转电极雾化试样硬度为 335 ± 7 HV。常温下,气体雾化试样抗拉强度为 1105 ± 20 MPa,等离子旋转电极雾化试样抗拉强度为 1130 ± 9 MPa。高温(650 ℃ )下,气 体雾化试样抗拉强度为 962 ± 3 MPa,等离子旋转电极雾化试样抗拉强度为 947 ± 4 MPa。

(3)在激光熔融沉积工艺中,研究激光功率以及扫描速度(送粉速度与扫描 速度同步改变)对试样的致密度、硬度的影响,确定了两种 AlSi10Mg 粉末的打印 I 摘 要 工艺窗口,并在最佳打印工艺参数下成功制备出性能优良的块状试样。研究发现, 旋转盘雾化粉末在打印过程中送粉效率高,烟尘少,成形质量稳定,沉积态试样 的表面光滑;气体雾化粉末在打印过程中烟尘多,成形精度差,沉积态试样边缘 存在局部坍塌。两种铝合金沉积态试样的力学性能相近。经过 T6 热处理后,两种 铝合金试样的力学性能提升显著,但是旋转盘雾化试样的微观组织更加细小均匀, 强度提升更大。

    本文通过对不同雾化工艺制备的粉末原料的性能进行定量表征,并研究粉末 原料特性在特定工艺中对打印工艺窗口以及成形质量的影响,将粉末的制备工艺 —粉末原料性能—3D 打印成形件质量相关联。本研究有助于为 3D 打印用金属粉 末的开发、生产以及选择提供指导,从而实现对金属增材制造成形件成本以及质 量的控制与优化,进一步推动金属增材制造技术的应用与发展。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] SANCHEZ S, SMITH P, XU Z, et al. Powder Bed Fusion of nickel-based superalloys: A review [J]. International Journal of Machine Tools and Manufacture, 2021(5): 103729.
[2] 前瞻产业. 2022 年全球 3D 打印行业市场规模与竞争格局[J]. 广东印刷, 2022(1): 1-5.
[3] 高歌. 德国“工业 4.0”对我国制造业创新发展的启示[J]. 中国特色社会主义研究, 2017, 4(2): 41-47.
[4] 柳朝阳, 赵备备, 李兰杰, 等. 金属材料 3D 打印技术研究进展[J]. 粉末冶金工业, 2020, 30 (02): 83-89.
[5] 黎兴刚, 刘畅, 朱强. 面向金属增材制造的气体雾化制粉技术研究进展[J]. 航空制造技术, 2019, 62(22): 13-16.
[6] 戴京伟. 大型激光选区熔化成形工作台设计与研究[D]. 重庆大学, 2018.
[7] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35 (10): 2690-2698.
[8] 黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010(6): 16-22.
[9] 张飞, 高正江, 马腾, 等. 增材制造用金属粉末材料及其制备技术[J]. 工业技术创新, 2017, 4(4): 5-12.
[10] OLAKANMI E O, COCHRANE R, DALGARNO K. A review on selective laser sintering/melt ing (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.
[11] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting[J]. Progress in Ma terials Science, 2019: 100578.
[12] FRANCESCO T, FLAVIANA C, MASSIMO L, et al. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties[J]. Materials, 2017, 10(76): 1-23.
[13] THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.
[14] AIS A, SCV B, AC C, et al. Texture evolution as a function of scan strategy and build height in electron beam melted Ti-6Al-4V - ScienceDirect[J]. Additive Manufacturing, 2021, 46.
[15] GOUVEIA R M, SILVA F, ATZENI E, et al. Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts[J]. Materials, 2020, 13 (10).
[16] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[17] ABOULKHAIR N T, MASKERY I, TUCK C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties[J]. Journal of Materials Processing Technology, 2016, 230: 88-98.
[18] SUFIIAROV V S, POPOVICH A A, BORISOV E V, et al. The Effect of Layer Thickness at Selective Laser Melting[J]. Procedia Engineering, 2017, 174(Complete): 126-134.
[19] 前瞻产业. 我国 3D 打印材料行业规模与发展前景[J]. 中国包装, 2020: 1-3.
[20] ORR F M. 2015 quadrennial technology review[C]//Proceedings of the International Confer ence for High Performance Computing, Networking, Storage and Analysis. 2015.
[21] 张冬云. 粉末材料性能对 SLM 模型制造过程影响的研究[J]. 应用激光, 2007, 27(1): 9-12.
[22] ABDELWAHED M, BENGSSTON S, CASATI R, et al. L-PBF Processing of Steel Powders Produced by Gas and Water Atomization[J]. BHM Berg- und Hüttenmännische Monatshefte, 2021, 166: 40-45.
[23] BRIKA S E, LETENNEUR M, DION C A, et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy[J]. Additive Manufacturing, 2019, 31: 100929.
[24] SPIERINGS A B, HERRES N, LEVY G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts[J]. Rapid Prototyping Journal, 2011.
[25] LIU B, WILDMAN R, TUCK C, et al. Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process[C]//2011 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2011.
[26] 王黎. 选择性激光熔化成形金属零件性能研究[D]. 武汉: 华中科技大学, 2012.
[27] AHSAN M N, PINKERTON A J, MOAT R J, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders[J]. Materials Science and Engineering A, 2011, 528(25-26): 7648-7657.
[28] ZHONG C, CHEN J, LINNENBRINK S, et al. A comparative study of Inconel 718 formed by High Deposition Rate Laser Metal Deposition with GA powder and PREP powder[J]. Materials and Design, 2016, 107(oct.5): 386-392.
[29] ZHAO Y, AOYAGI K, DAINO Y, et al. Significance of powder feedstock characteristics in defect suppression of additively manufactured Inconel 718[J]. Additive Manufacturing, 2020, 34(101277).
[30] KAMATH C, EL-DASHER B, GALLEGOS G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1-4): 65-78.
[31] IRRINKI, HARISH, JANGAM, et al. Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion[J]. Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2018, 331: 192-203.
[32] EV A, PFG A, FL B, et al. Effect of powder characteristics on production of oxide dispersion strengthened Fe 14Cr steel by laser powder bed fusion[J]. Powder Technology, 2020, 360: 998-1005.
[33] IRRINKI H, JANGAM J, PASEBANI S, et al. Effects of particle characteristics on the mi crostructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion[J]. Powder Technology, 2018.
[34] SEYDA V, HERZOG D, EMMELMANN C. Relationship between powder characteristics and part properties in laser beam melting of Ti–6Al–4V, and implications on quality[J]. Journal of Laser Applications, 2017, 29.
[35] CHEN G, ZHOU Q, ZHAO S Y, et al. A pore morphological study of gas-atomized Ti-6Al-4V powders by scanning electron microscopy and synchrotron X-ray computed tomography[J]. Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2018.
[36] 郭瑜, 龙学湖, 刘敏, 等. 粉末床熔融增材制造用金属粉末的研究现状[J]. 中国建材科技, 2021, 30(1): 5-8.
[37] 朱盼星, 石生荷, 杨剑, 等. 气体雾化技术制备金属粉末研究综述[J]. 粉末冶金工业, 2021, 31(4): 6-12.
[38] CACACE S, FURLAN V, SORCI R, et al. Using recycled material to produce gas-atomized metal powders for additive manufacturing processes[J]. Journal of Cleaner Production, 2020, 268: 122218.
[39] 陈莹莹, 肖志瑜, 李上奎, 等. 3D 打印用金属粉末的制备技术及其研究进展[J]. 粉末冶金 工业, 2018, 28(4): 6-11.
[40] 陆亮亮. 3D 打印用球形钛粉气雾化制备技术及机理研究[D]. 北京科技大学, 2019.
[41] WEI M, CHEN S, LIANG J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing[J]. Vacuum, 2017, 143: 185-194.
[42] ÜNAL A. Production of rapidly solidified magnesium powders by gas atomisation[J]. Materials Science and Technology, 1989, 5(10): 1027-1033.
[43] 尹燕, 董开基, 李治恒, 等. 紧耦合真空气雾化制备 Fe-Cr 合金粉末的特性表征[J]. 兰州理 工大学学报, 2021, 47(3): 5-7.
[44] 金莹, 刘平, 史金光, 等. 雾化压力对电极感应熔炼气雾化 TC4 粉末形貌与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 6-10.
[45] JALAAL M, MEHRAVARAN K. Fragmentation of falling liquid droplets in bag breakup mode [J]. International Journal of Multiphase Flow, 2012, 47(none): 115-132.
[46] JALAAL M. Direct numerical simulation of fragmentation of droplets[J]. University of British Columbia, 2012.
[47] FAKHARI A, RAHIMIAN M H. Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method[J]. Computers And Fluids, 2011, 40 (1): 156-171.
[48] 杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状[J]. 粉末冶金工 业, 2021, 31(4): 6-10.
[49] SUN P, FANG Z Z, ZHANG Y, et al. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder[J]. JOM - Journal of the Minerals, Metals and Materials Society, 2017.
[50] 黄迎红. 旋转盘离心雾化制备球形焊粉设备及工艺研究[M]. 旋转盘离心雾化制备球形焊 粉设备及工艺研究, 2011.
[51] 王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(05): 1-4.
[52] TIWARI J K, MANDAL A, SATHISH N, et al. Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite[J]. Additive Manufacturing, 2020, 33: 101095.
[53] MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting[J]. Journal of Materials Research and Technology, 2012, 1(3): 167-177.
[54] ZUBACK J S, DEBROY T. The Hardness of Additively Manufactured Alloys[J]. Materials, 2018, 11(11).
[55] KEMPEN K, THIJS L, HUMBEECK J V, et al. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting[J]. Physics Procedia, 2012, 39: 439-446.
[56] 邹黎明, 毛新华, 胡可, 等. 采用图像分析技术对球形 Ti-6Al-4V 粉末粒形的定量分析[J]. 稀有金属材料与工程, 2020, 49(3): 6-8.
[57] 唐鹏钧, 陈冰清, 闫泰起, 等. 热处理对增材制造 AlSi10Mg 合金组织性能及残余应力的影 响[J]. 科技导报, 2021, 39(9): 12-14.
[58] 樊振中, 袁文全, 王端志, 等. 压铸铝合金研究现状与未来发展趋势[J]. 铸造, 2020, 69(2): 8-12.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TF122
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335821
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
阮刚. 面向金属增材制造的气体雾化与离心雾化粉末性能比较研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
阮刚-12032439-机械与能源工程系(24383KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[阮刚]的文章
百度学术
百度学术中相似的文章
[阮刚]的文章
必应学术
必应学术中相似的文章
[阮刚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。