[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008,451(7179): 652-657.
[2] CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emergingelectric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289.
[3] DUNN B, KAMATH H, TARASCON J-M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[4] LUNTZ A C, MCCLOSKEY B D. Nonaqueous Li–air batteries: A status report[J].Chemical Reviews, 2014, 114(23): 11721-11750.
[5] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries withhigh energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[6] 李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术,2015, 4(3): 306-318.
[7] XU B, QIAN D, WANG Z, et al. Recent progress in cathode materials researchfor advanced lithium ion batteries[J]. Materials Science and Engineering: R:Reports, 2012, 73(5): 51-65.
[8] 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022: 1-19.
[9] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. AdvancedFunctional Materials, 2013, 23(8): 947-958.
[10] 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349.
[11] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodiumion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[12] ARMAND M B. Intercalation electrodes[M]//MURPHY D W, BROADHEAD J,STEELE B C H. Materials for Advanced Batteries. Boston, MA; Springer US.1980: 145-161.
[13] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivinesas positive-electrode materials for rechargeable lithium batteries[J]. Journal ofThe Electrochemical Society, 1997, 144(4): 1188-1194.
[14] DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification andproperties of the layered oxides[J]. Physica B+C, 1980, 99(1): 81 -85.
[15] REDDY M V, JIE T W, JAFTA C J, et al. Studies on Bare and Mg-doped LiCoO2as a cathode material for lithium ion batteries[J]. Electrochimica Acta, 2014, 128:192-197.
[16] THACKERAY M M, DAVID W I F, BRUCE P G, et al. Lithium insertion intomanganese spinels[J]. Materials Research Bulletin, 1983, 18(4): 461 -472.
[17] PARK S H, KANG S H, JOHNSON C S, et al. Lithium–manganese–nickel-oxideelectrodes with integrated layered–spinel structures for lithium batteries[J].Electrochemistry Communications, 2007, 9(2): 262-268.
[18] HU S, PILLAI A S, LIANG G, et al. Li-rich layered oxides and their practicalchallenges: Recent progress and perspectives[J]. Electrochemical EnergyReviews, 2019, 2(2): 277-311.
[19] GOIKOLEA E, PALOMARES V, WANG S, et al. Na-ion batteries-approachingold and new challenges[J]. Advanced Energy Materials, 2020, 10(44): 2002055.
[20] FOUASSIER C, DELMAS C, HAGENMULLER P. Evolution structurale etproprietes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ⩽ 1)[J].Materials Research Bulletin, 1975, 10(6): 443-449.
[21] DELMAS C, BRACONNIER J-J, FOUASSIER C, et al. Electrochemicalintercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3-4:165-169.
[22] BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalationelectrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials ResearchBulletin, 1982, 17(8): 993-1000.
[23] MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemicalintercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid StateChemistry, 1985, 57(3): 323-331.
[24] TAKEDA Y, NAKAHARA K, NISHIJIMA M, et al. Sodium deintercalation fromsodium iron oxide[J]. Materials Research Bulletin, 1994, 29(6): 659 -666.
[25] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid StateIonics, 2009, 180(14): 911-916.
[26] DELMAS C, CHERKAOUI F, NADIRI A, et al. A NASICON-type phase asintercalation electrode: NaTi2(PO4)3[J]. Materials Research Bulletin, 1987, 22(5):631-639.
[27] UEBOU Y, KIYABU T, OKADA S, et al. Electrochemical sodium insertion intothe 3D-framework of Na3M2(PO4)3 (M= Fe, V)[J]. Reports-Institute of AdvancedMaterial Study Kyushu University, 2002, 16: 1-6.
[28] OKADA S, YAMAKI J-I. Polyanionic cathode-active materials[M]//YOSHIO M,BRODD R J, KOZAWA A. Lithium-ion batteries: Science and technologies. NewYork, NY; Springer New York. 2009: 195-205.
[29] SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellentcycling stability and superior rate capability of Na3V2(PO4)3 for sodium ionbatteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450.
[30] XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathodematerials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364.
[31] PENNYCOOK S J, NELLIST P D. Scanning transmission electron microscopy:Imaging and analysis[M]. Springer Science & Business Media, 2011.
[32] QIAN D, MA C, MORE K L, et al. Advanced analytical electron microscopy forlithium-ion batteries[J]. NPG Asia Materials, 2015, 7(6): e193-e193.
[33] XU B, FELL C R, CHI M, et al. Identifying surface structural changes in layeredLi-excess nickel manganese oxides in high voltage lithium ion batteries: A jointexperimental and theoretical study[J]. Energy & Environmental Science, 2011,4(6): 2223-2233.
[34] CARROLL K J, QIAN D, FELL C, et al. Probing the electrode/electrolyteinterface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2[J]. PhysicalChemistry Chemical Physics, 2013, 15(26): 11128-11138.
[35] QIAN D, XU B, CHI M, et al. Uncovering the roles of oxygen vacancies in cationmigration in lithium excess layered oxides[J]. Physical Chemistry ChemicalPhysics, 2014, 16(28): 14665-14668.
[36] BOULINEAU A, SIMONIN L, COLIN J-F, et al. First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides forlithium batteries[J]. Nano Letters, 2013, 13(8): 3857-3863.
[37] FELL C R, QIAN D, CARROLL K J, et al. Correlation between oxygen vacancy,microstrain, and cation distribution in lithium-excess layered oxides during thefirst electrochemical cycle[J]. Chemistry of Materials, 2013, 25(9): 1621-1629.
[38] GU M, GENC A, BELHAROUAK I, et al. Nanoscale phase separation, cationordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ionbatteries[J]. Chemistry of Materials, 2013, 25(11): 2319-2326.
[39] WU Y, MA C, YANG J, et al. Probing the initiation of voltage decay in Li-richlayered cathode materials at the atomic scale[J]. Journal of Materials ChemistryA, 2015, 3(10): 5385-5391.
[40] HUANG JIAN Y, ZHONG L, WANG CHONG M, et al. In situ observation of theelectrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010,330(6010): 1515-1520.
[41] HAUSBRAND R, CHERKASHININ G, EHRENBERG H, et al. Fundamentaldegradation mechanisms of layered oxide Li-ion battery cathode materials:Methodology, insights and novel approaches[J]. Materials Science andEngineering: B, 2015, 192: 3-25.
[42] VETTER J, NOVáK P, WAGNER M R, et al. Ageing mechanisms in lithium -ionbatteries[J]. Journal of Power Sources, 2005, 147(1): 269-281.参考文献53
[43] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J].Chemistry of Materials, 2010, 22(3): 587-603.
[44] GOODENOUGH J B, PARK K-S. The Li-ion rechargeable battery: Aperspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167 -1176.
[45] GABRISCH H, YAZAMI R, FULTZ B. Hexagonal to cubic spinel transformationin lithiated cobalt oxide[J]. Journal of The Electrochemical Society, 2004, 151(6):A891.
[46] KIKKAWA J, TERADA S, GUNJI A, et al. Chemical states of overchargedLiCoO2 particle surfaces and interiors observed using electron energy-lossspectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(28): 15823 -15830.
[47] YANO A, SHIKANO M, UEDA A, et al. LiCoO2 Degradation behavior in thehigh-voltage phase transition region and improved reversibility with surfacecoating[J]. Journal of The Electrochemical Society, 2016, 164(1): A6116 -A6122.
[48] LI L, SELF E C, DARBAR D, et al. Hidden subsurface reconstruction and itsatomic origins in layered oxide cathodes[J]. Nano Letters, 2020, 20(4): 2756-2762.
[49] YAN P, ZHENG J, LV D, et al. Atomic-resolution visualization of distinctivechemical mixing behavior of Ni, Co, and Mn with Li in layered lithiumtransition-metal oxide cathode materials[J]. Chemistry of Materials, 2015, 27(15):5393-5401.
[50] YU H, REN Y, XIAO D, et al. An ultrastable anode for long-life roomtemperature sodium-ion batteries[J]. Angewandte Chemie International Edition,2014, 53(34): 8963-8969.
[51] JIANG Y, YAN P, YU M, et al. Atomistic mechanism of cracking degradation attwin boundary of LiCoO2[J]. Nano Energy, 2020, 78: 105364.
[52] BESLI M M, XIA S, KUPPAN S, et al. Mesoscale chemomechanical interplay ofthe LiNi0.8Co0.15Al0.05O2 cathode in solid-state polymer batteries[J]. Chemistry ofMaterials, 2019, 31(2): 491-501.
[53] WANG K, YAN P, SUI M. Phase transition induced cracking plaguing layeredcathode for sodium-ion battery[J]. Nano Energy, 2018, 54: 148-155.
[54] SINGER A, ZHANG M, HY S, et al. Nucleation of dislocations and theirdynamics in layered oxide cathode materials during battery charging[J]. NatureEnergy, 2018, 3(8): 641-647.
[55] YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistryof Ni-rich layered cathodes for enhanced cycle stability of lithium-ionbatteries[J]. Nature Energy, 2018, 3(7): 600-605.
[56] YAN P, ZHENG J, CHEN T, et al. Coupling of electrochemically triggeredthermal and mechanical effects to aggravate failure in a layered cathode[J].Nature Communications, 2018, 9(1): 2437.
[57] LI S, YAO Z, ZHENG J, et al. Direct observation of defect-aided structuralevolution in a nickel-rich layered cathode[J]. Angewandte Chemie InternationalEdition, 2020, 59(49): 22092-22099.
[58] SUN C, LIAO X, XIA F, et al. High-voltage cycling induced thermalvulnerability in LiCoO2 cathode: Cation loss and oxygen release driven byoxygen vacancy migration[J]. ACS Nano, 2020, 14(5): 6181-6190.
[59] LV C, YANG J, PENG Y, et al. 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructuresas excellent cathodes for Li-ion battery[J]. Electrochimica Acta, 2019, 297: 258-266.
[60] CHU B, LIU S, YOU L, et al. Enhancing the cycling stability of Ni-richLiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping[J]. ACSSustainable Chemistry & Engineering, 2020, 8(8): 3082-3090.
[61] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. ChemicalReviews, 2004, 104(10): 4271-4302.
[62] USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise ofsodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035.
[63] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recentadvances and present challenges to become low cost energy storage systems[J].Energy & Environmental Science, 2012, 5(3): 5884-5901.
[64] GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal ofPower Sources, 2011, 196(16): 6688-6694.
[65] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodiumlayered oxides: Powerful cathodes for Na-ion batteries[J]. Energy &Environmental Science, 2015, 8(1): 81-102.
[66] LU X, WANG Y, LIU P, et al. Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale[J]. Phys Chem Chem Phys, 2014,16(40): 21946-21952.
[67] ZHU Y-F, XIAO Y, HUA W-B, et al. Manipulating layered P2@P3 integratedspinel structure evolution for high-performance sodium-ion batteries[J].Angewandte Chemie International Edition, 2020, 59(24): 9299-9304.
[68] ZHENG J, YAN P, KAN W H, et al. A spinel-integrated P2-Type layeredcomposite: High-rate cathode for sodium-ion batteries[J]. Journal of TheElectrochemical Society, 2016, 163(3): A584-A591.
[69] WANG P-F, YOU Y, YIN Y-X, et al. Layered oxide cathodes for sodium-ionbatteries: Phase transition, air stability, and performance[J]. Advanced EnergyMaterials, 2018, 8(8): 1701912.
[70] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performancemanganese-based layered oxide cathodes: overcoming the challenges of sodiumion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051 -1074.
[71] WANG S, SUN C, WANG N, et al. Ni- and/or Mn-based layered transition metaloxides as cathode materials for sodium ion batteries: status, challenges andcountermeasures[J]. Journal of Materials Chemistry A, 2019, 7(17): 10138 -10158.
[72] XU G-L, AMINE R, XU Y-F, et al. Insights into the structural effects of layeredcathode materials for high voltage sodium-ion batteries[J]. Energy &Environmental Science, 2017, 10(7): 1677-1693.
[73] YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials forrechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2):1701785.
[74] WANG Q-C, MENG J-K, YUE X-Y, et al. Tuning P2-structured cathode materialby Na-site Mg substitution for Na-ion batteries[J]. Journal of the AmericanChemical Society, 2019, 141(2): 840-848.
[75] LIU H, DENG W, GAO X, et al. Manganese-based layered oxide cathodes forsodium ion batteries[J]. Nano Select, 2020, 1(2): 200-225.
[76] ZHENG J, YE Y, LIU T, et al. Ni/Li disordering in layered transition metal oxide:Electrochemical impact, origin, and control[J]. Accounts of Chemical Research,2019, 52(8): 2201-2209.
[77] BI Y, TAO J, WU Y, et al. Reversible planar gliding and microcracking in asingle-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317.
[78] ZHAO C, YAO Z, WANG Q, et al. Revealing high Na-content P2-type layeredoxides as advanced sodium-ion cathodes[J]. Journal of the American ChemicalSociety, 2020, 142(12): 5742-5750.
[79] WANG K, WAN H, YAN P, et al. Dopant segregation boosting high-voltagecyclability of layered cathode for sodium ion batteries[J]. Advanced Materials,2019, 31(46): 1904816.
[80] LU Z, DONABERGER R A, DAHN J R. Superlattice ordering of Mn, Ni, and Coin layered alkali transition metal oxides with P2, P3, and O3 structures[J].Chemistry of Materials, 2000, 12(12): 3583-3590.
[81] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0[82] YANG Q, HUANG J, LI Y, et al. Surface-protected LiCoO2 with ultrathin solidoxide electrolyte film for high-voltage lithium ion batteries and lithium polymerbatteries[J]. Journal of Power Sources, 2018, 388: 65-70.
[83] ZHANG J-N, LI Q, OUYANG C, et al. Trace doping of multiple elements enablesstable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[84] SEONG W M, YOON K, LEE M H, et al. Unveiling the intrinsic cyclereversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractivesurface modification for lithium-ion batteries[J]. Nano Letters, 2019, 19(1): 29-37.
[85] LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation inlithium-ion battery cathode materials[J]. Angewandte Chemie InternationalEdition, 2019, 58(31): 10478-10485.
[86] JIANG Y, QIN C, YAN P, et al. Origins of capacity and voltage fading of LiCoO 2upon high voltage cycling[J]. Journal of Materials Chemistry A, 2019, 7(36):20824-20831.
[87] LYU Y, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodesfor lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
[88] MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrodematerials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63: 58-116.
[89] SHARIFI-ASL S, LU J, AMINE K, et al. Oxygen release degradation in Li-ionbattery cathode materials: Mechanisms and mitigating approaches[J]. AdvancedEnergy Materials, 2019, 9(22): 1900551.
[90] GU M, BELHAROUAK I, ZHENG J, et al. Formation of the spinel phase in thelayered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1):760-767.
[91] LI S, LI K, ZHENG J, et al. Structural distortion-induced charge gradientdistribution of Co ions in delithiated LiCoO2 cathode[J]. The Journal of PhysicalChemistry Letters, 2019, 10(24): 7537-7546.
[92] YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier forhigh-voltage usage of layer-structured cathode for lithium-ion batteries[J]. NatureCommunications, 2017, 8(1): 14101.
[93] CHO W, MYEONG S, KIM N, et al. Critical role of cations in lithium sites onextended electrochemical reversibility of Co-rich layered oxide[J]. AdvancedMaterials, 2017, 29(21): 1605578.
[94] ZHANG H, MAY B M, SERRANO-SEVILLANO J, et al. Facet-dependent rocksalt reconstruction on the surface of layered Oxide cathodes[J]. Chemistry ofMaterials, 2018, 30(3): 692-699.
[95] LIU H, WOLF M, KARKI K, et al. Intergranular cracking as a major cause oflong-term capacity fading of layered cathodes[J]. Nano Letters, 2017, 17(6):3452-3457.
[96] YAN P, ZHENG J, ZHANG J-G, et al. Atomic resolution structural and chemicalimaging revealing the sequential migration of Ni, Co, and Mn upon the batterycycling of layered cathode[J]. Nano Letters, 2017, 17(6): 3946-3951.
[97] ZHANG H, OMENYA F, YAN P, et al. Rock-salt growth-induced (003) crackingin a layered positive electrode for Li-ion batteries[J]. ACS Energy Letters, 2017,2(11): 2607-2615.
[98] RADIN M D, ALVARADO J, MENG Y S, et al. Role of crystal symmetry in thereversibility of stacking-sequence changes in layered intercalation electrodes[J].Nano Letters, 2017, 17(12): 7789-7795.
[99] YOON M, DONG Y, YOO Y, et al. Unveiling nickel chemistry in stabilizing highvoltage cobalt-rich cathodes for lithium-ion batteries[J]. Advanced FunctionalMaterials, 2020, 30(6): 1907903.
[100]WANG Z, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELSobservation of nanoscale interfacial phenomena in all-solid-state batteries[J].Nano Letters, 2016, 16(6): 3760-3767.
[101]WANG Z L, YIN J S, JIANG Y D. EELS analysis of cation valence state s andoxygen vacancies in magnetic oxides[J]. Micron, 2000, 31(5): 571 -580.
[102]XU Y, HU E, ZHANG K, et al. In situ visualization of state-of-chargeheterogeneity within a LiCoO2 particle that evolves upon cycling at differentrates[J]. ACS Energy Letters, 2017, 2(5): 1240-1245.
修改评论