中文版 | English
题名

聚乳酸基金属有机框架复合纤维的制备及抗菌性能研究

其他题名
PREPARATION AND ANTIBACTERIAL PROPERTIES OF POLYLACTIC ACID-BASED METAL ORGANIC FRAMEWORK COMPOSITE FIBERS
姓名
姓名拼音
YUAN Yimu
学号
12032297
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
廖成竹
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

病原体在空气中的传播是一个严重的公共安全问题,佩戴口罩能够便捷有效地抑制病原体传播。然而大多数口罩都是基于非生物降解聚合物制备的,并且缺乏抗菌活性。这类口罩的大量使用不仅会增加环境的负担,同时吸附在上面的大量病原体还会增加二次传播的高风险。具有抗菌特性的锌基-金属有机框架(Zn-MOFs)晶体与可生物降解的聚乳酸(PLA)的复合是解决以上问题的理想策略。

本文以水为溶剂,在室温下制备了Zn-MOFs晶体,分别是沸石咪唑酯骨架ZIF-8、ZIF-L和Dia(Zn)。通过一系列的表征技术对Zn-MOFs材料的形貌、结构及热稳定性能进行了研究,通过平板法研究了Zn-MOFs的体外抗菌性能。研究结果表明,所制备的材料热稳定性能良好。在黑暗条件下,Zn-MOFs都具备一定的抗菌性能,光照可以提高它们的抗菌效果。

以可生物降解PLA作为基体,通过静电纺丝技术,制备纤维薄膜。采用溶液混纺和原位生长方法,将ZIF-8、ZIF-L和Dia(Zn)微/纳颗粒分别引入PLA中制备复合纤维材料。通过一系列表征技术对Zn-MOFs@PLA复合纤维膜材料的形貌、结构、热学性能进行了研究,并采用平板法研究了其体外抗菌性能。研究结果表明,两种方法都能成功制备复合纤维材料。溶液混纺制备的复合纤维膜抗菌性能不显著,而原位生长制备的复合纤维膜则表现出优异的抗菌性能,对大肠杆菌实现了100%抗菌效率。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] YU Y J, BU F Q, ZHOU H L, et al. Biosafety materials: an emerging new research direction of materials science from the COVID-19 outbreak [J]. Materials Chemistry Frontiers, 2020, 4(7): 1930-53.
[2] CHOI S, JEON H, JANG M, et al. Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter [J]. Advanced Science, 2021, 8(6).
[3] ALI L, KUTTIYATHIL M S, ALTARAWNEH M. Catalytic upgrading of the polymeric constituents in Covid-19 masks [J]. Journal of Environmental Chemical Engineering, 2022, 10(1).
[4] HALE R C, SEELEY M E, LA GUARDIA M J, et al. A Global Perspective on Microplastics [J]. Journal of Geophysical Research-Oceans, 2020, 125(1).
[5] CHUAYBAMROONG P, CHOTIGAWIN R, SUPOTHINA S, et al. Efficacy of photocatalytic HEPA filter on microorganism removal [J]. Indoor Air, 2010, 20(3): 246-54.
[6] PYANKOV O V, BODNEV S A, PYANKOVA O G, et al. Survival of aerosolized coronavirus in the ambient air [J]. Journal of Aerosol Science, 2018, 115: 158-63.
[7] FRERE L, MAIGNIEN L, CHALOPIN M, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size [J]. Environmental Pollution, 2018, 242: 614-25.
[8] ZHANG Z F, JI D X, HE H J, et al. Electrospun ultrafine fibers for advanced face masks [J]. Materials Science & Engineering R-Reports, 2021, 143.
[9] CONTRERAS-CACERES R, CABEZA L, PERAZZOLI G, et al. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy [J]. Nanomaterials, 2019, 9(4).
[10] LIU X Z, HE X, JIN D W, et al. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration [J]. Acta Biomaterialia, 2020, 108: 207-22.
[11] LI Y C, LIAO C Z, TJONG S C. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications [J]. Nanomaterials, 2019, 9(4).
[12] SHEN Y B, TU T, YI B C, et al. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response [J]. Acta Biomaterialia, 2019, 97: 200-15.
[13] SHEN M F, FORGHANI F, KONG X Q, et al. Antibacterial applications of metal-organic frameworks and their composites [J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4): 1397-419.
[14] LI R, CHEN T T, PAN X L. Metal-Organic-Framework-Based Materials for Antimicrobial Applications [J]. Acs Nano, 2021, 15(3): 3808-48.
[15] LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage and separation using metal-organic frameworks [J]. Materials Today, 2018, 21(2): 108-21.
[16] LI J, WANG X X, ZHAO G X, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions [J]. Chemical Society Reviews, 2018, 47(7): 2322-56.
[17] JIAO L, WANG Y, JIANG H L, et al. Metal-Organic Frameworks as Platforms for Catalytic Applications [J]. Advanced Materials, 2018, 30(37).
[18] FENG D W, LEI T, LUKATSKAYA M R, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance [J]. Nature Energy, 2018, 3(1): 30-6.
[19] ZHANG Y M, YUAN S, DAY G, et al. Luminescent sensors based on metal-organic frameworks [J]. Coordination Chemistry Reviews, 2018, 354: 28-45.
[20] YANG J, YANG Y W. Metal-Organic Frameworks for Biomedical Applications [J]. Small, 2020, 16(10).
[21] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-91.
[22] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science, 2008, 319(5865): 939-43.
[23] PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks [J]. Accounts of Chemical Research, 2010, 43(1): 58-67.
[24] YAO J F, HE M, WANG H T. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks [J]. Crystengcomm, 2015, 17(27): 4970-6.
[25] YAO J F, WANG H T. Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications [J]. Chemical Society Reviews, 2014, 43(13): 4470-93.
[26] ABDELHAMID H N. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review [J]. Current Medicinal Chemistry, 2021, 28(34): 7023-75.
[27] HU Q Q, GUO H Z, DOU H J. Size Control and Biomedical Applications of ZIF-8 Nanoparticles [J]. Progress in Chemistry, 2020, 32(5): 656-64.
[28] KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles [J]. International Journal of Biological Macromolecules, 2016, 91: 778-88.
[29] WANG J, WANG Y M, ZHANG Y T, et al. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance [J]. Acs Applied Materials & Interfaces, 2016, 8(38): 25508-19.
[30] AU-DUONG A N, LEE C K. Iodine-loaded metal organic framework as growth-triggered antimicrobial agent [J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 76: 477-82.
[31] CHEN J Y, ZHANG X, HUANG C, et al. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films [J]. Journal of Biomedical Materials Research Part A, 2017, 105(3): 834-46.
[32] MALIK A, NATH M, MOHIYUDDIN S, et al. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue [J]. Acs Omega, 2018, 3(7): 8288-308.
[33] SU Z P, ZHANG M Y, LU Z Q, et al. Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability [J]. Cellulose, 2018, 25(3): 1997-2008.
[34] CHEN H, YANG J, SUN L, et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems [J]. Small, 2019, 15(47).
[35] MA S S, ZHANG M Y, NIE J Y, et al. Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications [J]. Carbohydrate Polymers, 2019, 208: 328-35.
[36] MA W J, LI Y S, ZHANG M J, et al. Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances [J]. Acs Applied Materials & Interfaces, 2020, 12(31): 34999-5010.
[37] TAO B L, ZHAO W K, LIN C C, et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration [J]. Chemical Engineering Journal, 2020, 390.
[38] YANG Y Y, GUO Z P, HUANG W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric [J]. Applied Surface Science, 2020, 503.
[39] CHEN R Z, YAO J F, GU Q F, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption [J]. Chemical Communications, 2013, 49(82): 9500-2.
[40] SHI Q, CHEN Z F, SONG Z W, et al. Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors [J]. Angewandte Chemie-International Edition, 2011, 50(3): 672-5.
[41] FENG Y, WANG H T, YAO J F. Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications [J]. Coordination Chemistry Reviews, 2021, 431.
[42] LOW Z-X, YAO J, LIU Q, et al. Crystal Transformation in Zeolitic-Imidazolate Framework [J]. Crystal Growth & Design, 2014, 14(12): 6589-98.
[43] LO Y, LAM C H, CHANG C W, et al. Polymorphism/pseudopolymorphism of metalorganic frameworks composed of zinc(II) and 2methylimidazole: synthesis, stability, and application in gas storage [J]. Rsc Advances, 2016, 6(92): 89148-56.
[44] ZHANG X M. Hydro(solvo)thermal in situ ligand syntheses [J]. Coordination Chemistry Reviews, 2005, 249(11-12): 1201-19.
[45] GLOWNIAK S, SZCZESNIAK B, CHOMA J, et al. Mechanochemistry: Toward green synthesis of metal-organic frameworks [J]. Materials Today, 2021, 46: 109-24.
[46] JOARISTI A M, JUAN-ALCANIZ J, SERRA-CRESPO P, et al. Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks [J]. Crystal Growth & Design, 2012, 12(7): 3489-98.
[47] ABUZALAT O, WONG D, ELSAYED M, et al. Sonochemical fabrication of Cu(II) and Zn(II) metal-organic framework films on metal substrates [J]. Ultrasonics Sonochemistry, 2018, 45: 180-8.
[48] CHAEMCHUEN S, ZHOU K, MOUSAVI B, et al. Spray drying of zeolitic imidazolate frameworks: investigation of crystal formation and properties [J]. Crystengcomm, 2018, 20(25): 3601-8.
[49] BELDON P J, FABIAN L, STEIN R S, et al. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry [J]. Angewandte Chemie-International Edition, 2010, 49(50): 9640-3.
[50] TANAKA S, MIYASHITA R. Aqueous-System-Enabled Spray-Drying Technique for the Synthesis of Hollow Polycrystalline ZIF-8 MOF Particles [J]. Acs Omega, 2017, 2(10): 6437-45.
[51] YAO J F, DONG D H, LI D, et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate [J]. Chemical Communications, 2011, 47(9): 2559-61.
[52] PASTORE V J, COOK T R, RZAYEV J. Polymer-MOF Hybrid Composites with High Porosity and Stability through Surface-Selective Ligand Exchange [J]. Chemistry of Materials, 2018, 30(23): 8639-49.
[53] CRAVILLON J, MUNZER S, LOHMEIER S J, et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J]. Chemistry of Materials, 2009, 21(8): 1410-2.
[54] LI P Z, WANG X J, LI Y X, et al. Co(II)-tricarboxylate metal-organic frameworks constructed from solvent-directed assembly for CO2 adsorption [J]. Microporous and Mesoporous Materials, 2013, 176: 194-8.
[55] WANG S Z, ZANG B, CHANG Y Y, et al. Synthesis and carbon dioxide capture properties of flower-shaped zeolitic imidazolate framework-L [J]. Crystengcomm, 2019, 21(43): 6536-44.
[56] WYSZOGRODZKA G, MARSZALEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications [J]. Drug Discovery Today, 2016, 21(6): 1009-18.
[57] DENG Q Q, SUN P P, ZHANG L, et al. Porphyrin MOF Dots-Based, Function -Adaptive Nanoplatform for Enhanced Penetration and Photodynamic Eradication of Bacterial Biofilms [J]. Advanced Functional Materials, 2019, 29(30).
[58] EMAM H E, DARWESH O M, ABDELHAMEED R M. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity [J]. Colloids and Surfaces B-Biointerfaces, 2018, 165: 219-28.
[59] GALLIS D F S, BUTLER K S, AGOLA J O, et al. Antibacterial Countermeasures via Metal-Organic Framework Supported Sustained Therapeutic Release [J]. Acs Applied Materials & Interfaces, 2019, 11(8): 7782-91.
[60] LIN S, LIU X M, TAN L, et al. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity [J]. Acs Applied Materials & Interfaces, 2017, 9(22): 19248-57.
[61] LIU J X, LI R, WANG Y F, et al. The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: Generation of superoxide radical and adsorption [J]. Journal of Alloys and Compounds, 2017, 693: 543-9.
[62] LIU Z W, WANG F M, REN J S, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria [J]. Biomaterials, 2019, 208: 21-31.
[63] QUIROS J, BOLTES K, AGUADO S, et al. Antimicrobial metal-organic frameworks incorporated into electrospun fibers [J]. Chemical Engineering Journal, 2015, 262: 189-97.
[64] RODRIGUEZ H S, HINESTROZA J P, OCHOA-PUENTES C, et al. Antibacterial Activity Against Escherichia coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized onto Cellulosic Fibers [J]. Journal of Applied Polymer Science, 2014, 131(19).
[65] RUBIN H N, NEUFELD B H, REYNOLDS M M. Surface-Anchored Metal-Organic Framework-Cotton Material for Tunable Antibacterial Copper Delivery [J]. Acs Applied Materials & Interfaces, 2018, 10(17): 15189-99.
[66] MALEKI A, SHAHBAZI M A, ALINEZHAD V, et al. The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization [J]. Advanced Healthcare Materials, 2020, 9(12).
[67] BERCHEL M, LE GALL T, DENIS C, et al. A silver-based metal-organic framework material as a 'reservoir' of bactericidal metal ions [J]. New Journal of Chemistry, 2011, 35(5): 1000-3.
[68] RESTREPO J, SERROUKH Z, SANTIAGO-MORALES J, et al. An Antibacterial Zn-MOF with Hydrazinebenzoate Linkers [J]. European Journal of Inorganic Chemistry, 2017, (3): 574-80.
[69] ZHUANG W J, YUAN D Q, LI J R, et al. Highly Potent Bactericidal Activity of Porous Metal-Organic Frameworks [J]. Advanced Healthcare Materials, 2012, 1(2): 225-38.
[70] MA D, LI P, DUAN X Y, et al. A Hydrolytically Stable Vanadium(IV) Metal-Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control [J]. Angewandte Chemie-International Edition, 2020, 59(10): 3905-9.
[71] HAN D L, YU P L, LIU X M, et al. Polydopamine modified CuS@HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability [J]. Rare Metals, 2022, 41(2): 663-72.
[72] LI J, SONG S, MENG J S, et al. 2D MOF Periodontitis Photodynamic Ion Therapy [J]. Journal of the American Chemical Society, 2021, 143(37): 15427-39.
[73] YUAN Y, ZHANG Y G. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays [J]. Nanomedicine-Nanotechnology Biology and Medicine, 2017, 13(7): 2199-207.
[74] YUAN Y, WU H, LU H F, et al. ZIF nano-dagger coated gauze for antibiotic-free wound dressing [J]. Chemical Communications, 2019, 55(5): 699-702.
[75] HATAMIE S, AHADIAN M M, ZOMOROD M S, et al. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework [J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 104.
[76] WANG D D, WU H H, ZHOU J J, et al. In Situ One-Pot Synthesis of MOF-Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy [J]. Advanced Science, 2018, 5(6).
[77] HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds [J]. Applied Catalysis B-Environmental, 2020, 261.
[78] LIAO Y, LOH C H, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications [J]. Progress in Polymer Science, 2018, 77: 69-94.
[79] XUE J J, WU T, DAI Y Q, et al. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications [J]. Chemical Reviews, 2019, 119(8): 5298-415.
[80] DING J X, ZHANG J, LI J N, et al. Electrospun polymer biomaterials [J]. Progress in Polymer Science, 2019, 90: 1-34.
[81] GREINER A, WENDORFF J H. Electrospinning: A fascinating method for the preparation of ultrathin fibres [J]. Angewandte Chemie-International Edition, 2007, 46(30): 5670-703.
[82] RAJESHKUMAR G, SESHADRI S A, DEVNANI G L, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites-A comprehensive review [J]. Journal of Cleaner Production, 2021, 310.
[83] FARAH S, ANDERSON D G, LANGER R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review [J]. Advanced Drug Delivery Reviews, 2016, 107: 367-92.
[84] RASAL R M, JANORKAR A V, HIRT D E. Poly(lactic acid) modifications [J]. Progress in Polymer Science, 2010, 35(3): 338-56.
[85] ILYAS R A, SAPUAN S M, HARUSSANI M M, et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications [J]. Polymers, 2021, 13(8).
[86] LASPRILLA A J R, MARTINEZ G A R, LUNELLI B H, et al. Poly-lactic acid synthesis for application in biomedical devices - A review [J]. Biotechnology Advances, 2012, 30(1): 321-8.
[87] LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid) [J]. Progress in Polymer Science, 2008, 33(8): 820-52.
[88] DAI X, LI X, WANG X L. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity [J]. Chemical Engineering Journal, 2018, 338: 82-91.
[89] DAI X, CAO Y, SHI X W, et al. The PLA/ZIF-8 Nanocomposite Membranes: The Diameter and Surface Roughness Adjustment by ZIF-8 Nanoparticles, High Wettability, Improved Mechanical Property, and Efficient Oil/Water Separation [J]. Advanced Materials Interfaces, 2016, 3(24).
[90] WANG X G, LIU C, MENG D, et al. Surface integration of polyelectrolyte and zeolitic imidazolate framework-67 for multifunctional poly (lactic acid) non-woven fabrics [J]. Applied Surface Science, 2021, 569.
[91] DENG L X, CAI C Y, HUANG Y Z, et al. In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries [J]. Microporous and Mesoporous Materials, 2022, 329.
[92] LIU W L, ZHANG H, ZHANG W, et al. Surface modification of a polylactic acid nanofiber membrane by zeolitic imidazolate framework-8 from secondary growth for drug delivery [J]. Journal of Materials Science, 2020, 55(31): 15275-87.
[93] MA S S, ZHANG M Y, NIE J Y, et al. Design of double-component metal-organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities [J]. Carbohydrate Polymers, 2019, 203: 415-22.
[94] SINGBUMRUNG K, MOTINA K, PISITSAK P, et al. Preparation of Cu-BTC/PVA Fibers with Antibacterial Applications [J]. Fibers and Polymers, 2018, 19(7): 1373-8.
[95] PAN Y C, LIU Y Y, ZENG G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chemical Communications, 2011, 47(7): 2071-3.
[96] HU Q, GUO H, DOU H. Size Control and Biomedical Applications of ZIF-8 Nanoparticles [J]. Progress in Chemistry, 2020, 32(5): 656-64.
[97] TRAN U P N, LE K K A, PHAN N T S. Expanding Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction [J]. Acs Catalysis, 2011, 1(2): 120-7.
[98] CHEN B, YANG Z, ZHU Y, et al. Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J]. Journal of Materials Chemistry A, 2014, 2(40): 16811-31.
[99] TAHERI M, ASHOK D, SEN T, et al. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties [J]. Chemical Engineering Journal, 2021, 413.
[100]ZHANG Y, LI T-T, SHIU B-C, et al. Two methods for constructing ZIF-8 nanomaterials with good bio compatibility and robust antibacterial applied to biomedical [J]. Journal of Biomaterials Applications, 2022, 36(6): 1042-54.
[101]LI P, LI J Z, FENG X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning [J]. Nature Communications, 2019, 10.
[102]LIU J, WANG W, WANG Z, et al. A Facile Method to Prepare Multifunctional Cotton Fabrics based on Zeolitic Imidazolate Framework [J]. Fibers and Polymers, 2021, 22(4): 1041-9.
[103]LI Z, GOU M, YUE X, et al. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects [J]. Journal of Hazardous Materials, 2021, 416.
[104]ZHANG X, LI H, MIAO W, et al. Vertically zeolitic imidazolate framework-L coated mesh with dagger-like structure for oil/water separation [J]. Aiche Journal, 2019, 65(6).
[105]YUAN Y, ZHANG Y. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays [J]. Nanomedicine-Nanotechnology Biology and Medicine, 2017, 13(7): 2199-207.
[106]HE M, YAO J F, LIU Q, et al. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution [J]. Microporous and Mesoporous Materials, 2014, 184: 55-60.
[107]CRAVILLON J, NAYUK R, SPRINGER S, et al. Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering [J]. Chemistry of Materials, 2011, 23(8): 2130-41.
[108]CHEN R, YAO J, GU Q, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption [J]. Chemical Communications, 2013, 49(82): 9500-2.
[109]ZHANG H, ZHAO M, YANG Y, et al. Hydrolysis and condensation of ZIF-8 in water [J]. Microporous and Mesoporous Materials, 2019, 288.
[110]MOTTILLO C, FRISCIC T. Carbon Dioxide Sensitivity of Zeolitic Imidazolate Frameworks [J]. Angewandte Chemie-International Edition, 2014, 53(29): 7471-4.
[111]FENG Y Q, MA P M, XU P W, et al. The crystallization behavior of poly(lactic acid) with different types of nucleating agents [J]. International Journal of Biological Macromolecules, 2018, 106: 955-62.
[112]ABDELHAMID H N, ZOU X D. Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption [J]. Green Chemistry, 2018, 20(5): 1074-84.
[113]ZHONG Z X, YAO J F, CHEN R Z, et al. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties [J]. Journal of Materials Chemistry A, 2015, 3(30): 15715-22.
[114]WANG T T, KOU Z K, MU S C, et al. 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries [J]. Advanced Functional Materials, 2018, 28(5).
[115]HAN X, TAO K, WANG D, et al. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors [J]. Nanoscale, 2018, 10(6): 2735-41.
[116]YUAN H Y, ALJNEIBI S, YUAN J R, et al. ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing [J]. Advanced Materials, 2019, 31(11).
[117]HUANG J, FANG G Z, LIU K, et al. Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications [J]. Chemical Engineering Journal, 2017, 322: 281-92.
[118]RAJU P, ARIVALAGAN P, NATARAJAN S. One-pot fabrication of multifunctional catechin@ZIF-L nanocomposite: Assessment of antibiofilm, larvicidal and photocatalytic activities [J]. Journal of Photochemistry and Photobiology B-Biology, 2020, 203.
[119]GU Q L, NG T C A, SUN Q M, et al. Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment [J]. Rsc Advances, 2019, 9(3): 1591-601.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335824
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
袁一木. 聚乳酸基金属有机框架复合纤维的制备及抗菌性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032297-袁一木-材料科学与工程(7611KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[袁一木]的文章
百度学术
百度学术中相似的文章
[袁一木]的文章
必应学术
必应学术中相似的文章
[袁一木]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。