中文版 | English
题名

半导体量子点光学性质研究及湿度传感应用

姓名
姓名拼音
YUAN Baozhen
学号
12032240
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
陈锐
导师单位
电子与电气工程系
论文答辩日期
2022-05-06
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  半导体量子点作为一种性能优异的光学材料,具有发光波长可调、带隙窄、发光效率高等优点,在太阳能电池、显示以及传感等领域得到了广泛的应用。然而,单壳层的量子点仍然面临发光效率低和光稳定性差等问题。本文将以ICdSe/ZnS半导体核壳量子点为研究对象,通过微球复合结构提升其发光及稳定性。此外,将CdSe/ZnS量子点应用于光学湿度传感,研究传感特性,讨论传感机制。具体的研究内容如下:

  本文通过激光光谱表征手段研究了CdSe/ZnS核壳量子点的基本光学特性,并利用多孔二氧化硅微球形成复合结构,提升材料性质。由于多孔二氧化硅微球表面凹凸不平,有效地增加了量子点的附着,同时,该结构能够充分增加光在材料的内部散射从而增强荧光。在最优条件下,其荧光强度可增强为原来的6.5倍。这是一种相对于利用配体交换、包覆壳层结构来说更简单的改善量子点发光性能的方法,为优化量子点的光学特性拓展了思路。

  研究发现,CdSe/ZnS量子点的荧光强度随湿度的增加而升高。通过温度依赖性、时间分辨光致发光光谱及PDMS包覆钝化等测试手段证明了在高湿度下,水分子会吸附在量子点的表面形成水膜,钝化了量子点表面相关的缺陷。实验分析了量子点作为光学湿度传感器的传感性能,该传感器具有20-40 s的快速响应与恢复时间,良好的稳定性,选择性及重复性等,并研制出小型的光学湿度传感器。

  本论文基于多种光谱测试手段研究了核壳结构量子点的光学特性,一方面,在不改变量子点本身性质的情况下优化了其发光性能;另一方面,实现了量子点环境光学传感。相关的研究结果对于后续进一步改善低维半导体材料的性质具有指导意义,同时,也推动了量子点在微型环境传感等领域的应用。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
[2] WANG Y, SUN HD. Advances and prospects of lasers developed from colloidal semiconductor nanostructures[J]. Progress in Quantum Electronics, 2018, 60:1-29.
[3] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E=S, SE, TE) semiconductor nanocrystallites[J]. Journal Of the American Chemical Society, 1993, 115(9):8706-8715.
[4] HINES M A, GUYOT-SIONNEST P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. Journal of Physical Chemistry, 1996, 100(2):468–471.
[5] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11):4847–4854.
[6] PENG ZA, PENG XG. Mechanisms of the shape evolution of CdSe nanocrystals[J]. Journal of the American Chemical Society, 2001, 123(7):1389–1395.
[7] ITHURRIA S, DUBERTRET B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level[J]. Journal of the American Chemical Society, 2008, 130(49):16504–16505.
[8] BRICHKIN S B, RAZUMOV V F. Colloidal quantum dots: synthesis, properties and applications[J]. Russian Chemical Reviews, 2016, 85(12):1297-1312.
[9] JIN X, CHEN WY, LI HC, et al. Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes[J]. Journal of Luminescence, 2021, 229:117670-117679.
[10] HUANG SC, YEH CW, CHEN GH, et al. Investigation of luminescence enhancement and decay of QD-LEDs: interface reactions between QDs and atmospheres[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2516-2525.
[11] KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586(7829):385-389.
[12] KIM D, JOO S Y, LEE C G, et al. Poly (methylmethacrylate) coating on quantum dot surfaces via photo-chemical reaction for defect passivation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 376:206-211.
[13] WANG XB, YU JH, CHEN R. Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing[J]. Scientific Reports, 2018, 8(1):17323.
[14] WANG Y, FONG K E, YANG SC, et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers[J]. Laser & Photonics Reviews, 2015, 9(5):507-516.
[15] DARWISH G H, ASSELIN J, TRAN M V, et al. Fully self-assembled silica nanoparticle-semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera[J]. ACS Applied Materials & Interfaces, 2020, 12(30):33530-33540.
[16] GAO M, ZENG J, LIANG K, et al. Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications[J]. Advanced Functional Materials, 2020, 30(9):1906950.
[17] JEON H, JO J H, YANG K P, et al. Improvement in efficiency and stability of quantum dot/polymer nanocomposite film for light-emitting diodes using refractive index-controlled quantum dot–silica hybrid particles[J]. Journal of Materials Chemistry C, 2019, 7(38):11764-11769.
[18] WU L, DENG JM, TAN XC, et al. Ratiometric fluorescence sensor for the sensitive detection of bacillus thuringiensis transgenic sequence based on silica coated supermagnetic nanoparticles and quantum dots[J]. Sensors and Actuators B: Chemical, 2018, 254:206-213.
[19] XIE HX, CHEN EG, YE Y, et al. Highly stabilized gradient alloy quantum dots and silica hybrid nanospheres by core double shells for photoluminescence devices[J]. Journal of Physical Chemistry Letters, 2020, 11(4):1428-1434.
[20] WOLKOFF P. Indoor air humidity, air quality, and health-an overview[J]. International Journal of Hygiene Environmental Health, 2018, 221(3):376-390.
[21] LIN K, MARR L C. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics[J]. Environmental Science & Technology, 2020, 54:1024-1032.
[22] PIETRYGA J M, PARK Y S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513-10622.
[23] CROOKER S A, BARRICK T, HOLLINGSWORTH J A. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime[J]. Applied Physics Letters, 2003, 82(17):2793-2795. 
[24] PENG XG, SCHLAMP MC, KADAVANICH A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997, 119(30):7019-7029.
[25] PIETRYGA J M, WERDER D J, WILLIAMS DJ, et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J]. Journal of the American Chemical Society, 2008, 130(14):4879-4885.
[26] DE GEYTER B, JUSTO Y, MOREELS I, et al. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots[J]. ACS Nano, 2011, 5(1):58-66.
[27] WU KF, SONG NH, LIU Z, et al. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes[J]. Journal of Physical Chemistry B, 2013, 117(32):7561-7570.
[28] PIRYATINSKI A, IVANOV S A, TRETIAK S, et al. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals[J]. Nano Letters, 2007, 233:108-115.
[29] NANDA J, IVANOV S A, HTOON H, et al. Absorption cross sections and auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance[J]. Journal of Applied Physics, 2006, 99(3):034309.
[30] BALET L P, IVANOV S A, PIRYATINSKI A, et al. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes[J]. Nano Letters, 2004, 4(8):1485-1488.
[31] SABA M, MINNIBERGER S, QUOCHI F, et al. Exciton-exciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals[J]. Advanced Materials, 2009, 21(49):4942-4946.
[32] ORON D, KAZES M, BANIN U. Multiexcitons in type-II colloidal semiconductor quantum dots[J]. Physical Review B, 2007, 75(3):035330.
[33] CIHAN A F, KELESTEMUR Y, GUZELTURK B, et al. Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission[J]. Journal of Physical Chemistry Letters, 2013, 4(23):4146-4152.
[34] LIAO C, XU RL, XU YQ, et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots[J]. Journal of Physical Chemistry Letters, 2016, 7(24):4968-4976.
[35] PARK Y S, BAE W K, BAKER T, et al. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces[J]. Nano Letters, 2015, 15(11):7319-7328.
[36] WANG S, YU JH, YE HQ, et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing auger recombination[J]. Advanced Optical Materials, 2021, 9(11):2100068.
[37] NG S M, KONESWARAN M, NARAYANASWAMY R, et al. A review on fluorescent inorganic nanoparticles for optical sensing applications[J]. RSC Advances, 2016, 6(26):21624-21661.
[38] FORSTER T. Zwischenmolekulare energiewandlung und fluoreszenz[J]. Annalen Der Physik, 1948, 2(1-2):55-74.
[39] STANISAVLJEVIC M, KRIZKOVA S, VACULOVICOVA M, et al. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application[J]. Biosensors & Bioelectronics, 2015, 74:562-574.
[40] CURUTCHET C, FRANCESCHETTI S, ZUNGER A, et al. Examining forster energy transfer for semiconductor nanocrystalline quantum dot donors and acceptors[J]. Journal of Physical Chemistry C, 2008, 112(35):13336-13341.
[41] YUAN L, LIN WY, ZHENG KB, et al. FRET-based small-molecule fluorescent probes: rational design and bioimaging application [J]. Accounts of Chemical Research, 2013, 46(7):1462-1473.
[42] FRASCO M F, CHANIOTAKIS N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1):229-240.
[43] MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Materials, 2003, 2(9):630-638.
[44] CHAN W C W, MAXWELL D J, GAO X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current Opinion Biotechnology, 2002, 13(1):40-46.
[45] TREEMAN R, WILLNER I. Optical molecular sensing with semiconductor quantum dots (QDs)[J]. Chemical Society Reviews, 2012, 41(10):4067-4085.
[46] XUE S, JIANG XF, ZHANG G, et al. Surface plasmon-enhanced optical formaldehyde sensor based on CdSe@ZnS quantum dots[J]. ACS Sensors, 2020, 5(4):1002-1009.
[47] XU L, HUANG XB, DAI WJ, et al. Charge and energy transfer between CdSe quantum dots and polyaniline[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(4):3474-3479.
[48] ROSENAU T, POTTHAST A, ROHRLING J, et al. A solvent-free and formalin-free Eschweiler-Clarke methylation for amines[J]. Synthetic Communications, 2002, 32(3):457-466.
[49] XU SY, SONG ZQ, QIAN XR, et al. Introducing carboxyl and aldehyde groups to softwood-derived cellulosic fibers by laccase/TEMPO-catalyzed oxidation[J]. Cellulose, 2013, 20(5):2371-2378.
[50] CHEN YF, ROSENZWEIG Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19):5132-5138.
[51] SONG ZL, HUANG Z, LIU JY, et al. Fully stretchable and humidity-resistant quantum dot gas sensors[J]. ACS Sensors, 2018, 3(5):1048-1055.
[52] DUN MH, TAN JF, TAN WH, et al. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery[J]. Sensors and Actuators B: Chemical, 2019, 298:126839.
[53] RAVARO L P, FORD P C, DE CAMARGO ASS. Optical oxygen sensing by MPA-capped CdTe quantum dots immobilized in mesoporous silica[J]. Microporous and Mesoporous Materials, 2020, 303:110237.
[54] JAISWAL J, SANGER A, TIWARI P, et al. MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor[J]. Sensors and Actuators B: Chemical, 2020, 305:127437.
[55] LIU Y, CHEN PP, ZHENG S, et al. Novel fluorescent sensor using molecularly imprinted silica microsphere-coated CdSe@CdS quantum dots and its application in the detection of 2,4,6-trichlorophenol from environmental water samples[J]. Luminescence, 2019, 34(7):680-688.
[56] VASUDEVAN D, TRINCHI A, HARDIN S G, et al. Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots[J]. Journal of Luminescence, 2015, 166:88-92.
[57] RUEDAS-RAMA M J, HALL E A H. Azamacrocycle activated quantum dot for zinc ion detection[J]. Analytical Chemistry, 2008, 80(21):5260-8268.
[58] HU J, WU P, DENG DY, et al. An optical humidity sensor based on CdTe nanocrystals modified porous silicon[J]. Microchemical Journal, 2013, 108:100-105.
[59] CHENG YY, WANG H, LI L, et al. Flexible photoluminescent humidity sensing material based on electrospun PVA nanofibers comprising surface-carboxylated QDs[J]. Sensors and Actuators B: Chemical, 2019, 284:258-264.
[60] CHEN WG, LU XC, FAN FL, et al. Optical-gain-based sensing using inorganic-ligand-passivated colloidal quantum dots[J]. Nano Letters, 2021, 21(18):7732-7739.
[61] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1):149-154.
[62] ODONNELL K P, CHEN X. Temperature-dependence of semiconductor band-gaps[J]. Applied Physics Letters, 1991, 58(25):2924-2926.
[63] KELLEY A M. Electron-phonon coupling in CdSe nanocrystals[J]. Journal of Physical Chemistry Letters, 2010, 1(9):1296-1300.
[64] JO J H, HEO H S, LEE K, et al. Assessing stability of nanocomposites containing quantum dot/silica hybrid particles with different morphologies at high temperature and humidity[J]. Chemistry of Materials, 2020, 32(24):10538-10544.
[65] RYU J, YUN J, LEE J, et al. Hierarchical mesoporous silica nanoparticles as superb light scattering materials[J]. Chemical Communications, 2016, 52(10):2165-2168.
[66] KIM H C, HONG H G, YOON C, et al. Fabrication of high quantum yield quantum dot/polymer films by enhancing dispersion of quantum dots using silica particles[J]. Journal of Colloid and Interface Science, 2013, 393:74-79.
[67] UM K, KIM H J, JO J H, et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles[J]. Chemical Engineering Journal, 2019, 369:109-115.
[68] QI HJ, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. Journal of Colloid and Interface Science, 2019, 539:332-341.
[69] LI H, CHEN JW, CHANG XH, et al. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range[J]. Journal of Materials Chemistry A, 2021, 9(3):1795-1802.
[70] ZHAO XJ, JI CD, MA L, et al. An aggregation-induced emission-based "turn-on" fluorescent probe for facile detection of gaseous formaldehyde[J]. ACS Sensors, 2018, 3(10):2112-2117.
[71] ZHAI BB, ZHANG YQ, HU ZW, et al. A ratiometric fluorescent probe for the detection of formaldehyde in aqueous solution and air via aza-cope reaction[J]. Dyes and Pigment, 2019,171:107743.
[72] LI HJ, SUN X, XUE FF, et al. Redox induced fluorescence on-off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):1708-1716.
[73] FERNANDEZ-RAMOS M, ORDONEZ Y F, CAPITAN-VALLVEY, et al. Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer[J]. Sensors and Actuators B: Chemical, 2015, 220:528–533.
[74] CHEN MY, XUE S, LIU L, et al. A highly stable optical humidity sensor[J]. Sensors and Actuators B: Chemical, 2019, 287:329-337.
[75] ASCORBE J, CORRES J M, MATIAS I R, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances[J]. Sensors and Actuators B: Chemical, 2016, 233:7–16.
[76] PECHSTEDT K, WHITTLE T, BAUMBERG J, et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: The critical effect of water molecules[J]. Journal of Physical Chemistry C, 2010, 114(28):12069–12077.
[77] NAZZAL A Y, WANG XY, QU LH, et al. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films[J]. Journal of Physical Chemistry B, 2004, 108(18):5507-5515.
[78] ODA M, HASEGAWA A, LWAMI N, et al. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: adsorption effects of water molecules onto nanocrystal surfaces[J]. Journal of Luminescence, 2007, 127(1):198-203.
[79] MENG C, XIAO Y, WANG P, et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 2011, 23(33):3770-3774.
[80] CORDERO S R, CARSON P J, ESTABROOK R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers[J]. Journal of Physical Chemistry B, 2000, 104(51):12137-12142.
[81] SINGH A, SHARMA S N. Stability studies of colloidal indium phosphide quantum dots: humidity-induced photoluminescence enhancement[C]// International Conference on the Recent Trends in Materials and Devices. Springer Proceedings in Physics, 2017:73-79.
[82] ZHANG XY, PANG GT, XING GC, et al. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film[J]. Materials Today Physics, 2020, 15:100259.

所在学位评定分委会
电子与电气工程系
国内图书分类号
O472
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335827
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
袁宝珍. 半导体量子点光学性质研究及湿度传感应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032240-袁宝珍-电子与电气工程(4420KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[袁宝珍]的文章
百度学术
百度学术中相似的文章
[袁宝珍]的文章
必应学术
必应学术中相似的文章
[袁宝珍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。