[1] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
[2] WANG Y, SUN HD. Advances and prospects of lasers developed from colloidal semiconductor nanostructures[J]. Progress in Quantum Electronics, 2018, 60:1-29.
[3] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E=S, SE, TE) semiconductor nanocrystallites[J]. Journal Of the American Chemical Society, 1993, 115(9):8706-8715.
[4] HINES M A, GUYOT-SIONNEST P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. Journal of Physical Chemistry, 1996, 100(2):468–471.
[5] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11):4847–4854.
[6] PENG ZA, PENG XG. Mechanisms of the shape evolution of CdSe nanocrystals[J]. Journal of the American Chemical Society, 2001, 123(7):1389–1395.
[7] ITHURRIA S, DUBERTRET B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level[J]. Journal of the American Chemical Society, 2008, 130(49):16504–16505.
[8] BRICHKIN S B, RAZUMOV V F. Colloidal quantum dots: synthesis, properties and applications[J]. Russian Chemical Reviews, 2016, 85(12):1297-1312.
[9] JIN X, CHEN WY, LI HC, et al. Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes[J]. Journal of Luminescence, 2021, 229:117670-117679.
[10] HUANG SC, YEH CW, CHEN GH, et al. Investigation of luminescence enhancement and decay of QD-LEDs: interface reactions between QDs and atmospheres[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2516-2525.
[11] KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586(7829):385-389.
[12] KIM D, JOO S Y, LEE C G, et al. Poly (methylmethacrylate) coating on quantum dot surfaces via photo-chemical reaction for defect passivation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 376:206-211.
[13] WANG XB, YU JH, CHEN R. Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing[J]. Scientific Reports, 2018, 8(1):17323.
[14] WANG Y, FONG K E, YANG SC, et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers[J]. Laser & Photonics Reviews, 2015, 9(5):507-516.
[15] DARWISH G H, ASSELIN J, TRAN M V, et al. Fully self-assembled silica nanoparticle-semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera[J]. ACS Applied Materials & Interfaces, 2020, 12(30):33530-33540.
[16] GAO M, ZENG J, LIANG K, et al. Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications[J]. Advanced Functional Materials, 2020, 30(9):1906950.
[17] JEON H, JO J H, YANG K P, et al. Improvement in efficiency and stability of quantum dot/polymer nanocomposite film for light-emitting diodes using refractive index-controlled quantum dot–silica hybrid particles[J]. Journal of Materials Chemistry C, 2019, 7(38):11764-11769.
[18] WU L, DENG JM, TAN XC, et al. Ratiometric fluorescence sensor for the sensitive detection of bacillus thuringiensis transgenic sequence based on silica coated supermagnetic nanoparticles and quantum dots[J]. Sensors and Actuators B: Chemical, 2018, 254:206-213.
[19] XIE HX, CHEN EG, YE Y, et al. Highly stabilized gradient alloy quantum dots and silica hybrid nanospheres by core double shells for photoluminescence devices[J]. Journal of Physical Chemistry Letters, 2020, 11(4):1428-1434.
[20] WOLKOFF P. Indoor air humidity, air quality, and health-an overview[J]. International Journal of Hygiene Environmental Health, 2018, 221(3):376-390.
[21] LIN K, MARR L C. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics[J]. Environmental Science & Technology, 2020, 54:1024-1032.
[22] PIETRYGA J M, PARK Y S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18):10513-10622.
[23] CROOKER S A, BARRICK T, HOLLINGSWORTH J A. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime[J]. Applied Physics Letters, 2003, 82(17):2793-2795.
[24] PENG XG, SCHLAMP MC, KADAVANICH A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997, 119(30):7019-7029.
[25] PIETRYGA J M, WERDER D J, WILLIAMS DJ, et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J]. Journal of the American Chemical Society, 2008, 130(14):4879-4885.
[26] DE GEYTER B, JUSTO Y, MOREELS I, et al. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots[J]. ACS Nano, 2011, 5(1):58-66.
[27] WU KF, SONG NH, LIU Z, et al. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes[J]. Journal of Physical Chemistry B, 2013, 117(32):7561-7570.
[28] PIRYATINSKI A, IVANOV S A, TRETIAK S, et al. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals[J]. Nano Letters, 2007, 233:108-115.
[29] NANDA J, IVANOV S A, HTOON H, et al. Absorption cross sections and auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance[J]. Journal of Applied Physics, 2006, 99(3):034309.
[30] BALET L P, IVANOV S A, PIRYATINSKI A, et al. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes[J]. Nano Letters, 2004, 4(8):1485-1488.
[31] SABA M, MINNIBERGER S, QUOCHI F, et al. Exciton-exciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals[J]. Advanced Materials, 2009, 21(49):4942-4946.
[32] ORON D, KAZES M, BANIN U. Multiexcitons in type-II colloidal semiconductor quantum dots[J]. Physical Review B, 2007, 75(3):035330.
[33] CIHAN A F, KELESTEMUR Y, GUZELTURK B, et al. Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission[J]. Journal of Physical Chemistry Letters, 2013, 4(23):4146-4152.
[34] LIAO C, XU RL, XU YQ, et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots[J]. Journal of Physical Chemistry Letters, 2016, 7(24):4968-4976.
[35] PARK Y S, BAE W K, BAKER T, et al. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces[J]. Nano Letters, 2015, 15(11):7319-7328.
[36] WANG S, YU JH, YE HQ, et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing auger recombination[J]. Advanced Optical Materials, 2021, 9(11):2100068.
[37] NG S M, KONESWARAN M, NARAYANASWAMY R, et al. A review on fluorescent inorganic nanoparticles for optical sensing applications[J]. RSC Advances, 2016, 6(26):21624-21661.
[38] FORSTER T. Zwischenmolekulare energiewandlung und fluoreszenz[J]. Annalen Der Physik, 1948, 2(1-2):55-74.
[39] STANISAVLJEVIC M, KRIZKOVA S, VACULOVICOVA M, et al. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application[J]. Biosensors & Bioelectronics, 2015, 74:562-574.
[40] CURUTCHET C, FRANCESCHETTI S, ZUNGER A, et al. Examining forster energy transfer for semiconductor nanocrystalline quantum dot donors and acceptors[J]. Journal of Physical Chemistry C, 2008, 112(35):13336-13341.
[41] YUAN L, LIN WY, ZHENG KB, et al. FRET-based small-molecule fluorescent probes: rational design and bioimaging application [J]. Accounts of Chemical Research, 2013, 46(7):1462-1473.
[42] FRASCO M F, CHANIOTAKIS N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1):229-240.
[43] MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Materials, 2003, 2(9):630-638.
[44] CHAN W C W, MAXWELL D J, GAO X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current Opinion Biotechnology, 2002, 13(1):40-46.
[45] TREEMAN R, WILLNER I. Optical molecular sensing with semiconductor quantum dots (QDs)[J]. Chemical Society Reviews, 2012, 41(10):4067-4085.
[46] XUE S, JIANG XF, ZHANG G, et al. Surface plasmon-enhanced optical formaldehyde sensor based on CdSe@ZnS quantum dots[J]. ACS Sensors, 2020, 5(4):1002-1009.
[47] XU L, HUANG XB, DAI WJ, et al. Charge and energy transfer between CdSe quantum dots and polyaniline[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(4):3474-3479.
[48] ROSENAU T, POTTHAST A, ROHRLING J, et al. A solvent-free and formalin-free Eschweiler-Clarke methylation for amines[J]. Synthetic Communications, 2002, 32(3):457-466.
[49] XU SY, SONG ZQ, QIAN XR, et al. Introducing carboxyl and aldehyde groups to softwood-derived cellulosic fibers by laccase/TEMPO-catalyzed oxidation[J]. Cellulose, 2013, 20(5):2371-2378.
[50] CHEN YF, ROSENZWEIG Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19):5132-5138.
[51] SONG ZL, HUANG Z, LIU JY, et al. Fully stretchable and humidity-resistant quantum dot gas sensors[J]. ACS Sensors, 2018, 3(5):1048-1055.
[52] DUN MH, TAN JF, TAN WH, et al. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery[J]. Sensors and Actuators B: Chemical, 2019, 298:126839.
[53] RAVARO L P, FORD P C, DE CAMARGO ASS. Optical oxygen sensing by MPA-capped CdTe quantum dots immobilized in mesoporous silica[J]. Microporous and Mesoporous Materials, 2020, 303:110237.
[54] JAISWAL J, SANGER A, TIWARI P, et al. MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor[J]. Sensors and Actuators B: Chemical, 2020, 305:127437.
[55] LIU Y, CHEN PP, ZHENG S, et al. Novel fluorescent sensor using molecularly imprinted silica microsphere-coated CdSe@CdS quantum dots and its application in the detection of 2,4,6-trichlorophenol from environmental water samples[J]. Luminescence, 2019, 34(7):680-688.
[56] VASUDEVAN D, TRINCHI A, HARDIN S G, et al. Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots[J]. Journal of Luminescence, 2015, 166:88-92.
[57] RUEDAS-RAMA M J, HALL E A H. Azamacrocycle activated quantum dot for zinc ion detection[J]. Analytical Chemistry, 2008, 80(21):5260-8268.
[58] HU J, WU P, DENG DY, et al. An optical humidity sensor based on CdTe nanocrystals modified porous silicon[J]. Microchemical Journal, 2013, 108:100-105.
[59] CHENG YY, WANG H, LI L, et al. Flexible photoluminescent humidity sensing material based on electrospun PVA nanofibers comprising surface-carboxylated QDs[J]. Sensors and Actuators B: Chemical, 2019, 284:258-264.
[60] CHEN WG, LU XC, FAN FL, et al. Optical-gain-based sensing using inorganic-ligand-passivated colloidal quantum dots[J]. Nano Letters, 2021, 21(18):7732-7739.
[61] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1):149-154.
[62] ODONNELL K P, CHEN X. Temperature-dependence of semiconductor band-gaps[J]. Applied Physics Letters, 1991, 58(25):2924-2926.
[63] KELLEY A M. Electron-phonon coupling in CdSe nanocrystals[J]. Journal of Physical Chemistry Letters, 2010, 1(9):1296-1300.
[64] JO J H, HEO H S, LEE K, et al. Assessing stability of nanocomposites containing quantum dot/silica hybrid particles with different morphologies at high temperature and humidity[J]. Chemistry of Materials, 2020, 32(24):10538-10544.
[65] RYU J, YUN J, LEE J, et al. Hierarchical mesoporous silica nanoparticles as superb light scattering materials[J]. Chemical Communications, 2016, 52(10):2165-2168.
[66] KIM H C, HONG H G, YOON C, et al. Fabrication of high quantum yield quantum dot/polymer films by enhancing dispersion of quantum dots using silica particles[J]. Journal of Colloid and Interface Science, 2013, 393:74-79.
[67] UM K, KIM H J, JO J H, et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles[J]. Chemical Engineering Journal, 2019, 369:109-115.
[68] QI HJ, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. Journal of Colloid and Interface Science, 2019, 539:332-341.
[69] LI H, CHEN JW, CHANG XH, et al. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range[J]. Journal of Materials Chemistry A, 2021, 9(3):1795-1802.
[70] ZHAO XJ, JI CD, MA L, et al. An aggregation-induced emission-based "turn-on" fluorescent probe for facile detection of gaseous formaldehyde[J]. ACS Sensors, 2018, 3(10):2112-2117.
[71] ZHAI BB, ZHANG YQ, HU ZW, et al. A ratiometric fluorescent probe for the detection of formaldehyde in aqueous solution and air via aza-cope reaction[J]. Dyes and Pigment, 2019,171:107743.
[72] LI HJ, SUN X, XUE FF, et al. Redox induced fluorescence on-off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):1708-1716.
[73] FERNANDEZ-RAMOS M, ORDONEZ Y F, CAPITAN-VALLVEY, et al. Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer[J]. Sensors and Actuators B: Chemical, 2015, 220:528–533.
[74] CHEN MY, XUE S, LIU L, et al. A highly stable optical humidity sensor[J]. Sensors and Actuators B: Chemical, 2019, 287:329-337.
[75] ASCORBE J, CORRES J M, MATIAS I R, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances[J]. Sensors and Actuators B: Chemical, 2016, 233:7–16.
[76] PECHSTEDT K, WHITTLE T, BAUMBERG J, et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: The critical effect of water molecules[J]. Journal of Physical Chemistry C, 2010, 114(28):12069–12077.
[77] NAZZAL A Y, WANG XY, QU LH, et al. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films[J]. Journal of Physical Chemistry B, 2004, 108(18):5507-5515.
[78] ODA M, HASEGAWA A, LWAMI N, et al. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: adsorption effects of water molecules onto nanocrystal surfaces[J]. Journal of Luminescence, 2007, 127(1):198-203.
[79] MENG C, XIAO Y, WANG P, et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 2011, 23(33):3770-3774.
[80] CORDERO S R, CARSON P J, ESTABROOK R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers[J]. Journal of Physical Chemistry B, 2000, 104(51):12137-12142.
[81] SINGH A, SHARMA S N. Stability studies of colloidal indium phosphide quantum dots: humidity-induced photoluminescence enhancement[C]// International Conference on the Recent Trends in Materials and Devices. Springer Proceedings in Physics, 2017:73-79.
[82] ZHANG XY, PANG GT, XING GC, et al. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film[J]. Materials Today Physics, 2020, 15:100259.
修改评论