[1] ANDERSON J M, STREITLIEN K, BARRETT D, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid mechanics, 1998, 360: 41-72.
[2] 袁志群, 谷正气. 基于多孔介质材料和仿生设计的汽车阻流板减阻机理[J]. 中国机械工程, 2019, 30(07): 777.
[3] 魏俊. 小Reynolds数下旋转多孔圆柱绕流研究[D]. 华中科技大学, 2019.
[4] 江晨阳. 韶山风环境及城市植被对PM_(2.5)浓度影响的研究[D]. 湖南大学, 2019.
[5] CHEN S B, CAI A. Hydrodynamic interactions and mean settling velocity of porous particles in a dilute suspension[J]. Journal of colloid and interface science, 1999, 217(2): 328-340.
[6] HIGDON J, KOJIMA M. On the calculation of Stokes' flow past porous particles[J]. International Journal of Multiphase Flow, 1981, 7(6): 719-727.
[7] HASSANIZADEH M, GRAY W G. General conservation equations for multi-phase systems: 1. Averaging procedure[J]. Advances in Water Resources, 1979, 2: 131-144.
[8] ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.
[9] BECKERMANN C, VISKANTA R. Double-diffusive convection during dendritic solidification of a binary mixture[J]. PhysicoChemical Hydrodynamics, 1988, 10(2): 195-213.
[10] GANESAN S, POIRIER D R. Conservation of mass and momentum for the flow of interdendritic liquid during solidification[J]. Metallurgical Transactions B, 1990, 21(1): 173-181.
[11] GETACHEW D, MINKOWYCZ W, POULIKAKOS D. Macroscopic equations of non-Newtonian fluid flow and heat transfer in a porous matrix[J]. Journal of Porous Media, 1998, 1: 273-283.
[12] HSU C-T, CHENG P. Thermal dispersion in a porous medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1587-1597.
[13] PAYATAKES A C, DASSIOS G. Creeping flow around and through a permeable sphere moving with constant velocity towards a solid wall[J]. Chemical Engineering Communications, 1987, 58(1-6): 119-138.
[14] CHEN S B. Axisymmetric motion of multiple composite spheres: Solid core with permeable shell, under creeping flow conditions[J]. Physics of fluids, 1998, 10(7): 1550-1563.
[15] JACKSON A, RYBAK I, HELMIG R, et al. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models[J]. Advances in Water Resources, 2012, 42: 71-90.
[16] MICHALOPOULOU A, BURGANOS V, PAYATAKES A. Creeping axisymmetric flow around a solid particle near a permeable obstacle[J]. AIChE journal, 1992, 38(8): 1213-1228.
[17] MICHALOPOULOU A, BURGANOS V, PAYATAKES A. Hydrodynamic interactions of two permeable particles moving slowly along their centerline[J]. Chemical engineering science, 1993, 48(16): 2889-2900.
[18] JONES R. Hydrodynamic interaction of two permeable spheres I: the method of reflections[J]. Physica A: Statistical Mechanics and its Applications, 1978, 92(3-4): 545-556.
[19] WOOD B D. Inertial effects in dispersion in porous media[J]. Water resources research, 2007, 43(12)
[20] NI J, BECKERMANN C. A volume-averaged two-phase model for transport phenomena during solidification[J]. Metallurgical Transactions B, 1991, 22(3): 349-361.
[21] WHITAKER S. Flow in porous media I: A theoretical derivation of Darcy's law[J]. Transport in porous media, 1986, 1(1): 3-25.
[22] YANG X, ZHENG Z C, WINECKI S, et al. Model simulation and experiments of flow and mass transport through a nano-material gas filter[J]. Applied Mathematical Modelling, 2013, 37(20-21): 9052-9062.
[23] SMIT G, WILMS J, DIEDERICKS G. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid[J]. Applied mathematics and computation, 2011, 217(11): 5068-5077.
[24] WANG L, WANG L-P, GUO Z, et al. Volume-averaged macroscopic equation for fluid flow in moving porous media[J]. International Journal of Heat and Mass Transfer, 2015, 82: 357-368.
[25] D'HUMIèRES D. Generalized lattice-Boltzmann equations[J]. Rarefied gas dynamics, 1992
[26] OCHOA-TAPIA J A, WHITAKER S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development[J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-2646.
[27] CHANG K S, SONG C J. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement[J]. International Journal for Numerical Methods in Fluids, 1990, 11(3): 317-329.
[28] SPIVACK H M. Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacing normal to an air stream[J]. Journal of the Aeronautical Sciences, 1946, 13(6): 289-301.
[29] BEARMAN P, WADCOCK A. The interaction between a pair of circular cylinders normal to a stream[J]. Journal of Fluid mechanics, 1973, 61(3): 499-511.
[30] WILLIAMSON C. Evolution of a single wake behind a pair of bluff bodies[J]. Journal of Fluid mechanics, 1985, 159: 1-18.
[31] SUMNER D, WONG S, PRICE S, et al. Fluid behaviour of side-by-side circular cylinders in steady cross-flow[J]. Journal of Fluids and Structures, 1999, 13(3): 309-338.
[32] STANSBY P. A numerical study of vortex shedding from one and two circular cylinders[J]. Aeronautical Quarterly, 1981, 32(1): 48-71.
[33] SCHULZ K W, KALLINDERIS Y. Three-dimensional numerical prediction of the hydrodynamic loads and motions of offshore structures[J]. J Offshore Mech Arct Eng, 2000, 122(4): 294-300.
[34] SLAOUTI A, STANSBY P. Flow around two circular cylinders by the random-vortex method[J]. Journal of Fluids and Structures, 1992, 6(6): 641-670.
[35] MITTAL S, KUMAR V, RAGHUVANSHI A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
[36] 袁猛, 张新玉, 柳贡民, et al. 并列双圆柱绕流的动力学模态分解[J]. 船舶力学, 2021, 25(05): 527-534.
[37] 张艺鸣, 罗良, 陈威, et al. 不等直径并列双圆柱绕流数值模拟研究[J]. 舰船科学技术, 2021, 43(09): 48-52.
[38] 刘强, 李强. 海上平台支撑柱绕流特性的大涡模拟分析[J]. 舰船科学技术, 2021, 43(03): 116-119.
[39] 林凌霄, 陈威, 林永水, et al. 并列双圆柱绕流特性和互扰效应数值模拟研究[J]. 应用力学学报, 2021, 38(02): 844-850.
[40] 段松长, 刘彩, 赵西增. 并列双圆柱绕流中间隙流偏斜现象的数值模拟; proceedings of the 第十八届中国海洋(岸)工程学术讨论会, 中国浙江舟山, F, 2017 [C].
[41] 庞建华, 宗智, 周力, et al. 并列双圆柱绕流中宽窄尾流的识别方法[J]. 中国舰船研究, 2016, 11(03): 37-42.
[42] 黄钰期, 邓见, 任安禄. 黏性非定常圆柱绕流的升阻力研究[J]. 浙江大学学报: 工学版, 2003, 37(5): 596-601.
[43] 杜晓庆, 林伟群, 施春林, et al. 高雷诺数下并列双圆柱绕流的大涡模拟[J]. 哈尔滨工业大学学报, 2019, 51(6): 193-200.
[44] 李燕玲, 苏中地, 李雪健. 高雷诺数下并列双圆柱绕流的 DES 法三维数值模拟[J]. 水动力学研究与进展: A 辑, 2014(4): 412-420.
[45] YU P, ZENG Y, LEE T S, et al. Steady flow around and through a permeable circular cylinder[J]. Computers & Fluids, 2011, 42(1): 1-12.
[46] [YU P, ZENG Y, LEE T, et al. Wake structure for flow past and through a porous square cylinder[J]. International Journal of Heat and Fluid Flow, 2010, 31(2): 141-153.
[47] 丁冠乔, 文军, 柳楷, et al. 多孔并列双圆柱绕流的流场分析[J]. 广东化工, 2015, 42(12): 21-23+28.
[48] 张潇丹, 雍玉梅, 李文军, et al. REV 尺度多孔介质格子 Boltzmann 方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(06): 1698-1712.
[49] KIM J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005, 204(2): 784-804.
[50] DING H, SPELT P D, SHU C. Diffuse interface model for incompressible two-phase flows with large density ratios[J]. Journal of Computational Physics, 2007, 226(2): 2078-2095.
[51] YUAN H, CHEN Z, SHU C, et al. A free energy-based surface tension force model for simulation of multiphase flows by level-set method[J]. Journal of Computational Physics, 2017, 345: 404-426.
[52] YU P, LEE T S, ZENG Y, et al. A numerical method for flows in porous and homogenous fluid domains coupled at the interface by stress jump[J]. International Journal for Numerical Methods in Fluids, 2007, 53(11): 1755-1775.
[53] CHEN X, YU P, WINOTO S, et al. Numerical analysis for the flow past a porous square cylinder based on the stress‐jump interfacial‐conditions[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2008
[54] OCHOA-TAPIA J A, WHITAKER S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment[J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-2655.
[55] ALBERTO J. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects[J]. J Porous Media, 1998, 1(3): 201-217.
[56] GUO Z, SHI B, ZHENG C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342.
[57] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual review of fluid mechanics, 1998, 30(1): 329-364.
[58] SHU C, WANG Y, TEO C, et al. Development of lattice Boltzmann flux solver for simulation of incompressible flows[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(4): 436-460.
[59] CHEN H, YU P, SHU C. A unified immersed boundary-lattice Boltzmann flux solver (UIB-LBFS) for simulation of flows past porous bodies[J]. Physics of fluids, 2021, 33(8): 083603.
[60] WANG Y, SHU C, TEO C, et al. An immersed boundary-lattice Boltzmann flux solver and its applications to fluid–structure interaction problems[J]. Journal of Fluids and Structures, 2015, 54: 440-465.
[61] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009, 228(6): 1963-1979.
[62] WILLIAMSON C H. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[J]. Journal of fluid mechanics, 1989, 206: 579-627.
[63] NORBERG C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio[J]. Journal of fluid mechanics, 1994, 258: 287-316.
[64] PARK J, KWON K, CHOI H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J]. KSME international Journal, 1998, 12(6): 1200-1205.
[65] SHUKLA R K, TATINENI M, ZHONG X. Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations[J]. Journal of Computational Physics, 2007, 224(2): 1064-1094.
[66] DENNIS S, CHANG G-Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100[J]. Journal of Fluid mechanics, 1970, 42(3): 471-489.
[67] HE X, DOOLEN G. Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder[J]. Journal of Computational Physics, 1997, 134(2): 306-315.
[68] BRAZA M, CHASSAING P, MINH H H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. Journal of Fluid mechanics, 1986, 165: 79-130.
[69] BENSON M, BELLAMY-KNIGHTS P, GERRARD J, et al. A viscous splitting algorithm applied to low Reynolds number flows round a circular cylinder[J]. Journal of Fluids and Structures, 1989, 3(5): 439-479.
[70] DING H, SHU C, YEO K, et al. Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(9-11): 727-744.
[71] LI Y, ZHANG R, SHOCK R, et al. Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach[J]. The European Physical Journal Special Topics, 2009, 171(1): 91-97.
[72] HARICHANDAN A B, ROY A. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme[J]. International Journal of Heat and Fluid Flow, 2010, 31(2): 154-171.
[73] LAROUSSI M, DJEBBI M, MOUSSA M. Triggering vortex shedding for flow past circular cylinder by acting on initial conditions: A numerical study[J]. Computers & Fluids, 2014, 101: 194-207.
[74] 廉丰华. 多孔介质圆柱非稳态绕流现象的数值模拟[D]. 南方科技大学, 2018.
[75] KANG S. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers[J]. Physics of fluids, 2003, 15(9): 2486-2498.
[76] SUZUKI K, INAMURO T. Effect of internal mass in the simulation of a moving body by the immersed boundary method[J]. Computers & Fluids, 2011, 49(1): 173-187.
修改评论