中文版 | English
题名

串并列多孔介质双圆柱绕流现象的数值研究

姓名
姓名拼音
ZHOU Lin
学号
11930579
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
余鹏
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-12
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

由于多孔介质材料有减阻降噪的特性,因此该材料在工业界备受青睐。而串列多孔介质双圆柱和并列多孔介质双圆柱作为最基础的多孔介质钝体群模型,对其进行绕流特性和升阻力系数的研究有着重要的学术和工业价值。

本文基于修正的浸没边界-格子玻尔兹曼通量(UIB-LBFS)算法,分别对单个多孔介质圆柱、并列多孔介质双圆柱和串列多孔介质双圆柱的绕流问题进行了数值模拟,并分析了圆柱的间距比、雷诺数和达西数对流场的影响。对于单个多孔介质圆柱绕流问题,在雷诺数为150时,达西数的变化对流场的周期性特征影响较强,升阻力系数的振幅随达西数的减小会先增大后减小。同时,平均流场下回流区的长度随雷诺数的增大而减小。对于并列多孔介质双圆柱,当达西数 和雷诺数Re=100时,本文发现决定尾部流场由非对称的耦合涡结构到对称涡结构转换的临界间距比在1.4到2之间;同时升力系数和阻力系数对间距比的变化也比较敏感。对于串列多孔介质双圆柱绕流问题,当达西数 和雷诺数Re=200时,临界间距比在4到5之间。当小于临界间距比时斯特劳哈尔数随间距比的增加而减小,反之随间距比的增加而增大,在临界间距比范围内发生突变。平均阻力系数和升力系数的振幅也会在临界间距比范围内有突变趋势。当间距比为4,雷诺数在20至50之间时,两个圆柱后方的尾涡长度随雷诺数的增大而增大。当雷诺数增大到100至400之间时,上游圆柱尾部流场由于受到下游圆柱的影响没有涡街出现,但是下游圆柱后方有规则脱落的涡街产生。当雷诺数为200、间距比为4和达西数为 1×10-2  时,流动为稳态的,只有下游圆柱后方有对称的梭型涡出现。当达西数减小至1×10-5 时,上下游圆柱后方均会有涡街产生。

本文研究成果有助于理解多孔介质绕流中尾涡变化和脱落的形成机理,以及揭示多孔圆柱间距对于相关工程问题的影响。这有助于为相关工业设备的设计和制造提供指导。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] ANDERSON J M, STREITLIEN K, BARRETT D, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid mechanics, 1998, 360: 41-72.
[2] 袁志群, 谷正气. 基于多孔介质材料和仿生设计的汽车阻流板减阻机理[J]. 中国机械工程, 2019, 30(07): 777.
[3] 魏俊. 小Reynolds数下旋转多孔圆柱绕流研究[D]. 华中科技大学, 2019.
[4] 江晨阳. 韶山风环境及城市植被对PM_(2.5)浓度影响的研究[D]. 湖南大学, 2019.
[5] CHEN S B, CAI A. Hydrodynamic interactions and mean settling velocity of porous particles in a dilute suspension[J]. Journal of colloid and interface science, 1999, 217(2): 328-340.
[6] HIGDON J, KOJIMA M. On the calculation of Stokes' flow past porous particles[J]. International Journal of Multiphase Flow, 1981, 7(6): 719-727.
[7] HASSANIZADEH M, GRAY W G. General conservation equations for multi-phase systems: 1. Averaging procedure[J]. Advances in Water Resources, 1979, 2: 131-144.
[8] ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.
[9] BECKERMANN C, VISKANTA R. Double-diffusive convection during dendritic solidification of a binary mixture[J]. PhysicoChemical Hydrodynamics, 1988, 10(2): 195-213.
[10] GANESAN S, POIRIER D R. Conservation of mass and momentum for the flow of interdendritic liquid during solidification[J]. Metallurgical Transactions B, 1990, 21(1): 173-181.
[11] GETACHEW D, MINKOWYCZ W, POULIKAKOS D. Macroscopic equations of non-Newtonian fluid flow and heat transfer in a porous matrix[J]. Journal of Porous Media, 1998, 1: 273-283.
[12] HSU C-T, CHENG P. Thermal dispersion in a porous medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1587-1597.
[13] PAYATAKES A C, DASSIOS G. Creeping flow around and through a permeable sphere moving with constant velocity towards a solid wall[J]. Chemical Engineering Communications, 1987, 58(1-6): 119-138.
[14] CHEN S B. Axisymmetric motion of multiple composite spheres: Solid core with permeable shell, under creeping flow conditions[J]. Physics of fluids, 1998, 10(7): 1550-1563.
[15] JACKSON A, RYBAK I, HELMIG R, et al. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models[J]. Advances in Water Resources, 2012, 42: 71-90.
[16] MICHALOPOULOU A, BURGANOS V, PAYATAKES A. Creeping axisymmetric flow around a solid particle near a permeable obstacle[J]. AIChE journal, 1992, 38(8): 1213-1228.
[17] MICHALOPOULOU A, BURGANOS V, PAYATAKES A. Hydrodynamic interactions of two permeable particles moving slowly along their centerline[J]. Chemical engineering science, 1993, 48(16): 2889-2900.
[18] JONES R. Hydrodynamic interaction of two permeable spheres I: the method of reflections[J]. Physica A: Statistical Mechanics and its Applications, 1978, 92(3-4): 545-556.
[19] WOOD B D. Inertial effects in dispersion in porous media[J]. Water resources research, 2007, 43(12)
[20] NI J, BECKERMANN C. A volume-averaged two-phase model for transport phenomena during solidification[J]. Metallurgical Transactions B, 1991, 22(3): 349-361.
[21] WHITAKER S. Flow in porous media I: A theoretical derivation of Darcy's law[J]. Transport in porous media, 1986, 1(1): 3-25.
[22] YANG X, ZHENG Z C, WINECKI S, et al. Model simulation and experiments of flow and mass transport through a nano-material gas filter[J]. Applied Mathematical Modelling, 2013, 37(20-21): 9052-9062.
[23] SMIT G, WILMS J, DIEDERICKS G. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid[J]. Applied mathematics and computation, 2011, 217(11): 5068-5077.
[24] WANG L, WANG L-P, GUO Z, et al. Volume-averaged macroscopic equation for fluid flow in moving porous media[J]. International Journal of Heat and Mass Transfer, 2015, 82: 357-368.
[25] D'HUMIèRES D. Generalized lattice-Boltzmann equations[J]. Rarefied gas dynamics, 1992
[26] OCHOA-TAPIA J A, WHITAKER S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development[J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-2646.
[27] CHANG K S, SONG C J. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement[J]. International Journal for Numerical Methods in Fluids, 1990, 11(3): 317-329.
[28] SPIVACK H M. Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacing normal to an air stream[J]. Journal of the Aeronautical Sciences, 1946, 13(6): 289-301.
[29] BEARMAN P, WADCOCK A. The interaction between a pair of circular cylinders normal to a stream[J]. Journal of Fluid mechanics, 1973, 61(3): 499-511.
[30] WILLIAMSON C. Evolution of a single wake behind a pair of bluff bodies[J]. Journal of Fluid mechanics, 1985, 159: 1-18.
[31] SUMNER D, WONG S, PRICE S, et al. Fluid behaviour of side-by-side circular cylinders in steady cross-flow[J]. Journal of Fluids and Structures, 1999, 13(3): 309-338.
[32] STANSBY P. A numerical study of vortex shedding from one and two circular cylinders[J]. Aeronautical Quarterly, 1981, 32(1): 48-71.
[33] SCHULZ K W, KALLINDERIS Y. Three-dimensional numerical prediction of the hydrodynamic loads and motions of offshore structures[J]. J Offshore Mech Arct Eng, 2000, 122(4): 294-300.
[34] SLAOUTI A, STANSBY P. Flow around two circular cylinders by the random-vortex method[J]. Journal of Fluids and Structures, 1992, 6(6): 641-670.
[35] MITTAL S, KUMAR V, RAGHUVANSHI A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
[36] 袁猛, 张新玉, 柳贡民, et al. 并列双圆柱绕流的动力学模态分解[J]. 船舶力学, 2021, 25(05): 527-534.
[37] 张艺鸣, 罗良, 陈威, et al. 不等直径并列双圆柱绕流数值模拟研究[J]. 舰船科学技术, 2021, 43(09): 48-52.
[38] 刘强, 李强. 海上平台支撑柱绕流特性的大涡模拟分析[J]. 舰船科学技术, 2021, 43(03): 116-119.
[39] 林凌霄, 陈威, 林永水, et al. 并列双圆柱绕流特性和互扰效应数值模拟研究[J]. 应用力学学报, 2021, 38(02): 844-850.
[40] 段松长, 刘彩, 赵西增. 并列双圆柱绕流中间隙流偏斜现象的数值模拟; proceedings of the 第十八届中国海洋(岸)工程学术讨论会, 中国浙江舟山, F, 2017 [C].
[41] 庞建华, 宗智, 周力, et al. 并列双圆柱绕流中宽窄尾流的识别方法[J]. 中国舰船研究, 2016, 11(03): 37-42.
[42] 黄钰期, 邓见, 任安禄. 黏性非定常圆柱绕流的升阻力研究[J]. 浙江大学学报: 工学版, 2003, 37(5): 596-601.
[43] 杜晓庆, 林伟群, 施春林, et al. 高雷诺数下并列双圆柱绕流的大涡模拟[J]. 哈尔滨工业大学学报, 2019, 51(6): 193-200.
[44] 李燕玲, 苏中地, 李雪健. 高雷诺数下并列双圆柱绕流的 DES 法三维数值模拟[J]. 水动力学研究与进展: A 辑, 2014(4): 412-420.
[45] YU P, ZENG Y, LEE T S, et al. Steady flow around and through a permeable circular cylinder[J]. Computers & Fluids, 2011, 42(1): 1-12.
[46] [YU P, ZENG Y, LEE T, et al. Wake structure for flow past and through a porous square cylinder[J]. International Journal of Heat and Fluid Flow, 2010, 31(2): 141-153.
[47] 丁冠乔, 文军, 柳楷, et al. 多孔并列双圆柱绕流的流场分析[J]. 广东化工, 2015, 42(12): 21-23+28.
[48] 张潇丹, 雍玉梅, 李文军, et al. REV 尺度多孔介质格子 Boltzmann 方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(06): 1698-1712.
[49] KIM J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005, 204(2): 784-804.
[50] DING H, SPELT P D, SHU C. Diffuse interface model for incompressible two-phase flows with large density ratios[J]. Journal of Computational Physics, 2007, 226(2): 2078-2095.
[51] YUAN H, CHEN Z, SHU C, et al. A free energy-based surface tension force model for simulation of multiphase flows by level-set method[J]. Journal of Computational Physics, 2017, 345: 404-426.
[52] YU P, LEE T S, ZENG Y, et al. A numerical method for flows in porous and homogenous fluid domains coupled at the interface by stress jump[J]. International Journal for Numerical Methods in Fluids, 2007, 53(11): 1755-1775.
[53] CHEN X, YU P, WINOTO S, et al. Numerical analysis for the flow past a porous square cylinder based on the stress‐jump interfacial‐conditions[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2008
[54] OCHOA-TAPIA J A, WHITAKER S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment[J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-2655.
[55] ALBERTO J. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects[J]. J Porous Media, 1998, 1(3): 201-217.
[56] GUO Z, SHI B, ZHENG C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342.
[57] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual review of fluid mechanics, 1998, 30(1): 329-364.
[58] SHU C, WANG Y, TEO C, et al. Development of lattice Boltzmann flux solver for simulation of incompressible flows[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(4): 436-460.
[59] CHEN H, YU P, SHU C. A unified immersed boundary-lattice Boltzmann flux solver (UIB-LBFS) for simulation of flows past porous bodies[J]. Physics of fluids, 2021, 33(8): 083603.
[60] WANG Y, SHU C, TEO C, et al. An immersed boundary-lattice Boltzmann flux solver and its applications to fluid–structure interaction problems[J]. Journal of Fluids and Structures, 2015, 54: 440-465.
[61] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009, 228(6): 1963-1979.
[62] WILLIAMSON C H. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[J]. Journal of fluid mechanics, 1989, 206: 579-627.
[63] NORBERG C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio[J]. Journal of fluid mechanics, 1994, 258: 287-316.
[64] PARK J, KWON K, CHOI H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J]. KSME international Journal, 1998, 12(6): 1200-1205.
[65] SHUKLA R K, TATINENI M, ZHONG X. Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations[J]. Journal of Computational Physics, 2007, 224(2): 1064-1094.
[66] DENNIS S, CHANG G-Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100[J]. Journal of Fluid mechanics, 1970, 42(3): 471-489.
[67] HE X, DOOLEN G. Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder[J]. Journal of Computational Physics, 1997, 134(2): 306-315.
[68] BRAZA M, CHASSAING P, MINH H H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. Journal of Fluid mechanics, 1986, 165: 79-130.
[69] BENSON M, BELLAMY-KNIGHTS P, GERRARD J, et al. A viscous splitting algorithm applied to low Reynolds number flows round a circular cylinder[J]. Journal of Fluids and Structures, 1989, 3(5): 439-479.
[70] DING H, SHU C, YEO K, et al. Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(9-11): 727-744.
[71] LI Y, ZHANG R, SHOCK R, et al. Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach[J]. The European Physical Journal Special Topics, 2009, 171(1): 91-97.
[72] HARICHANDAN A B, ROY A. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme[J]. International Journal of Heat and Fluid Flow, 2010, 31(2): 154-171.
[73] LAROUSSI M, DJEBBI M, MOUSSA M. Triggering vortex shedding for flow past circular cylinder by acting on initial conditions: A numerical study[J]. Computers & Fluids, 2014, 101: 194-207.
[74] 廉丰华. 多孔介质圆柱非稳态绕流现象的数值模拟[D]. 南方科技大学, 2018.
[75] KANG S. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers[J]. Physics of fluids, 2003, 15(9): 2486-2498.
[76] SUZUKI K, INAMURO T. Effect of internal mass in the simulation of a moving body by the immersed boundary method[J]. Computers & Fluids, 2011, 49(1): 173-187.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335829
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
周琳. 串并列多孔介质双圆柱绕流现象的数值研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930579-周琳-力学与航空航天工(9310KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周琳]的文章
百度学术
百度学术中相似的文章
[周琳]的文章
必应学术
必应学术中相似的文章
[周琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。