[1] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 3354-3361.
[2] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[3] HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One thousand and one hours: Self-driving motion prediction dataset[J]. arXiv preprint arXiv:2006.14480, 2020.
[4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[5] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
[6] ZHANG H, WU C, ZHANG Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
[7] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021.
[8] ZHU X, SU W, LU L, et al. Deformable detr: Deformable transformers for end-to-end object detection[J]. arXiv preprint arXiv:2010.04159, 2020.
[9] SHI S, WANG X, LI H. Pointrcnn: 3d object proposal generation and detection from point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2019.
[10] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computerassisted intervention. Springer, 2015: 234-241.
[11] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.
[12] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
[13] LI E, WANG S, LI C, et al. Sustech points: A portable 3d point cloud interactive annotation platform system[C]//2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020: 1108-1115.
[14] WANG Y, CHEN X, YOU Y, et al. Train in germany, test in the usa: Making 3d object detectors generalize[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020: 11713-11723.
[15] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains [J]. Machine Learning, 2010, 79(1): 151-175.
[16] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
[17] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster r-cnn for object detection in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3339-3348.
[18] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
[19] HE Z, ZHANG L. Multi-adversarial faster-rcnn for unrestricted object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6668-6677.
[20] SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 6956-6965.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2980-2988.
[22] ZHENG Y, HUANG D, LIU S, et al. Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2020: 13766-13775.
[23] VS V, GUPTA V, OZA P, et al. Mega-cda: Memory guided attention for category-aware unsupervised domain adaptive object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2021: 4516-4526.
[24] ZHANG D, LI J, XIONG L, et al. Cycle-consistent domain adaptive faster rcnn[J]. IEEE Access, 2019, 7: 123903-123911.
[25] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232.
[26] HSU H K, YAO C H, TSAI Y H, et al. Progressive domain adaptation for object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020:749-757.
[27] ROYCHOWDHURY A, CHAKRABARTY P, SINGH A, et al. Automatic adaptation of object detectors to new domains using self-training[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 780-790.
[28] KHODABANDEH M, VAHDAT A, RANJBAR M, et al. A robust learning approach to domain adaptive object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 480-490.
[29] CAI Q, PAN Y, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019: 11457-11466.
[30] DENG J, LI W, CHEN Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2021: 4091-4101.
[31] YANG J, SHI S, WANG Z, et al. St3d: Self-training for unsupervised domain adaptation on 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2021: 10368-10378.
[32] YANG J, SHI S, WANG Z, et al. St3d++: Denoised self-training for unsupervised domain adaptation on 3d object detection[J]. arXiv preprint arXiv:2108.06682, 2021.
[33] LUO Z, CAI Z, ZHOU C, et al. Unsupervised domain adaptive 3d detection with multi-level consistency[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021: 8866-8875.
[34] XU Q, ZHOU Y, WANG W, et al. Spg: Unsupervised domain adaptation for 3d object detection via semantic point generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15446-15456.
[35] YOU Y, DIAZ-RUIZ C A, WANG Y, et al. Exploiting playbacks in unsupervised domain adaptation for 3d object detection[J]. arXiv preprint arXiv:2103.14198, 2021.
[36] HEGDE D, SINDAGI V, KILIC V, et al. Uncertainty-aware mean teacher for source-free unsupervised domain adaptive 3d object detection[J]. arXiv preprint arXiv:2109.14651, 2021.
[37] HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020:9729-9738.
[38] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//International Conference on Machine Learning. PMLR, 2020:1597-1607.
[39] XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1492-1500.
[40] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for effcient cnn architecture design[C]//European Conference on Computer Vision. 2018: 116-131.
[41] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely effcient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6848-6856.
[42] TAN M, LE Q. Effcientnet: Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. PMLR, 2019: 6105-6114.
[43] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. arXiv preprint arXiv:1706.02413, 2017.
[44] WANG Y, SUN Y, LIU Z, et al. Dynamic graph cnn for learning on point clouds[J]. Acm Transactions On Graphics (tog), 2019, 38(5): 1-12.
[45] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4490-4499.
[46] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[47] REDMON J, FARHADI A. Yolo9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271.
[48] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[49] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[50] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//European Conference on Computer Vision. Springer, 2016: 21-37.
[51] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
[52] DAI J, LI Y, HE K, et al. R-fcn: Object detection via region-based fully convolutional networks [J]. Advances in Neural Information Processing Systems, 2016, 29.
[53] TIAN Z, SHEN C, CHEN H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9627-9636.
[54] DUAN K, BAI S, XIE L, et al. Centernet: Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6569-6578.
[55] LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]//European Conference on Computer Vision. 2018: 734-750.
[56] YANG Z, LIU S, HU H, et al. Reppoints: Point set representation for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9657-9666.
[57] YAN Y, MAO Y, LI B. Second: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[58] LANG A H, VORA S, CAESAR H, et al. Pointpillars: Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 12697-12705.
[59] LI Y, BU R, SUN M, et al. Pointcnn: Convolution on x-transformed points[J]. Advances in Neural Information Processing Systems, 2018, 31: 820-830.
[60] SHI S, GUO C, JIANG L, et al. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020: 10529-10538.
[61] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. 2014: 580-587.
[62] WU Y, KIRILLOV A, MASSA F, et al. Detectron2[EB/OL]. 2019. https://github.com/facebookresearch/detectron2.
[63] LIN T Y, DOLL’aR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2117-2125.
[64] IOFFE S, NORMALIZATION C S B. Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2014.
[65] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2961-2969.
[66] TEAM O D. Openpcdet: An open-source toolbox for 3d object detection from point clouds [EB/OL]. 2020. https://github.com/open-mmlab/OpenPCDet.
[67] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660.
[68] DAHO M E H, SETTOUTI N, LAZOUNI M E A, et al. Weighted vote for trees aggregation in random forest[C]//2014 International Conference on Multimedia Computing and Systems (ICMCS). IEEE, 2014: 438-443.
[69] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT press, 2016.
[70] ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: k steps forward, 1 step back [J]. arXiv preprint arXiv:1907.08610, 2019.
[71] IZMAILOV P, PODOPRIKHIN D, GARIPOV T, et al. Averaging weights leads to wider optima and better generalization[J]. arXiv preprint arXiv:1803.05407, 2018.
[72] TARVAINEN A, VALPOLA H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[J]. arXiv preprint arXiv:1703.01780, 2017.
[73] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. PMLR, 2015: 448-456.
[74] PADILLA R, PASSOS W L, DIAS T L B, et al. A comparative analysis of object detection metrics with a companion open-source toolkit[J/OL]. Electronics, 2021, 10(3). https://www. mdpi.com/2079-9292/10/3/279. DOI: 10.3390/electronics10030279.
[75] QIAN N. On the momentum term in gradient descent learning algorithms[J]. Neural networks, 1999, 12(1): 145-151.
[76] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator [C]//Proceedings of the 1st Annual Conference on Robot Learning. 2017: 1-16.
[77] ZHANG Z, WANG S, HONG Y, et al. Distributed dynamic map fusion via federated learning for intelligent networked vehicles[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 953-959.
修改评论