中文版 | English
题名

高速公路场景下的车辆编队控制

其他题名
VEHICLE PLATOON CONTROL IN THE HIGHWAY SCENARIO
姓名
姓名拼音
OUYANG Zikai
学号
11930362
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
杨再跃
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自动驾驶技术的发展旨在减少由人为失误导致的交通事故,提高道路交通安全。目前自动驾驶技术尤其自动驾驶辅助技术已经在实车上得到很好的应用,极大地提高了人们的交通安全和出行便利。而对于汽车数量增加所带来的环境污染和交通拥堵现象,单个车辆的自动驾驶无力解决。5G 技术的发展使得车与车之间
的远距离通讯成为可能,人们开始研究多个车辆之间相互通讯协同配合,共同完成驾驶目标,因此有了车辆编队控制方面的研究。由于自动驾驶车辆的编队实现绝大多数是应用于高速公路场景,因此本文研究高速公路场景下的车辆编队控制。主要研究内容如下:
针对已有的前后车辆通讯拓扑结构的不足,本文建立了具有灵活通讯拓扑的车辆队列模型,提出了相应的领航车辆选择策略。目前已有的前后车辆通讯拓扑会使得车辆队列在应对外界冲击时出现过大的响应,而本文提出的领航车辆选择策略能让跟随车辆在车辆队列受到冲击时调整自身的领航车辆以此降低外界冲击
对自身的影响。仿真结果验证了所提出的领航车辆选择策略的有效性。
出于节省车辆通讯资源考虑,本文将动态事件触发机制应用到车辆队列控制中。与已有的静态事件触发机制相比,动态事件触发机制能更好地权衡通讯资源和车辆队列性能,从而达到更好地减少通讯次数以及提高信道可靠性的目的。
考虑车与车之间的通讯网络会受到外界拒绝服务(Denial of Service, DoS)攻击的影响,本文提出了一种应用于车辆队列的安全控制策略。将模型预测控制应用到队列首车的速度跟踪上,产生预测输入序列作为后续车辆在受到DoS攻击时的参考值。在队列首车按照给定的驾驶任务行驶的情况下,预测信号具有一定的参考价值。仿真结果表明,相较于已有的采样保持策略,安全控制策略能有效降低DoS 攻击对队列的影响。

其他摘要

The development of autonomous driving technology aims to reduce traffic accidents caused by human error and improve road safety. At present, the autonomous driving technology, especially the automatic driving assistance technology, has been well applied in real cars, which greatly improves the traffic safety and travel convenience. As for the environmental pollution and traffic congestion caused by the increase in the number of cars, the autonomous driving of a single vehicle is unable to solve the problem. The development of 5G technology makes vehicle to vehicle long-distance communication possible. Then people begin to study cooperative control of multiple vehicles, which result in the vehicle platoon control research. Since the vehicle platoon is mostly applied to highway scenario, this paper studies the vehicle platoon control in the highway scenario. The main research contents are as follows:
Due to the weakness of the existing leader follower communication topology, a vehicle platoon model with flexible communication topology is established in this paper, and the corresponding leader selection strategy is proposed. When the vehicle platoon is disturbed, the following vehicle can reduce the impact on itself by adjusting its leading vehicle in stead of making excessive response to the external disturbance with the leader follower topology. Simulation results verify the effectiveness of the proposed leader selection strategy.
In order to save vehicle communication resources, dynamic event trigger mechanism is applied to vehicle platoon control in this paper. Compared with the existing static event trigger mechanism, dynamic event trigger mechanism can better balance communication resources and vehicle platoon performance, so as to reduce communication times and improve channel reliability.
In this paper, we propose a security control strategy for the vehicle platoon, considering that the communication network between vehicles can be affected by external Denial of Service (DoS) attacks. The model predictive control (MPC) is applied to the speed tracking of the first vehicle in the platoon, and the predictive input sequence is generated as the reference value of the subsequent vehicle under DoS attack. In the case that the first vehicle is driving according to the given driving task, the prediction signal has certain reference value. The simulation results show that the security control strategy can effectively reduce the influence of DoS attack on platoon compared with the existing sampling hold strategy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-05
参考文献列表

[1] ORGANIZATION W H, et al. Global status report on road safety 2018: summary[R]. World Health Organization, 2018: 1-20.
[2] GAO H, CHENG B, WANG J, et al. Object classification using cnn-based fusion of vision and lidar in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224-4231.
[3] ZHANG X, GAO H, XUE C, et al. Real-time vehicle detection and tracking using improved histogram of gradient features and kalman filters[J]. International Journal of Advanced Robotic Systems, 2018, 15(1): 1-9.
[4] GAO H, SHI G, XIE G, et al. Car-following method based on inverse reinforcement learning for autonomous vehicle decision-making[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-11.
[5] SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 187-210.
[6] LI L, LU Y, WANG R, et al. A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with mpc[J]. IEEE Transactions on Industrial Electronics, 2016, 64(4): 3389-3401.
[7] GUO H, LIU J, CAO D, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles[J]. Mechatronics, 2018, 50: 422-433.
[8] ZHENHAI G. The driver’s steering feel assessment using eeg and emg signals[J]. Neuro-Quantology, 2018, 16(2): 6-13.
[9] GAO Z, LI C, HU H, et al. Simulator study of young driver’s instinctive response of lower extremity to a collision[J]. Traffic injury prevention, 2016, 17(4): 423-429.
[10] PADEN B, ČÁP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.
[11] FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181.
[12] SINGH S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey[R]. 2015: 1-2.
[13] VAN BRUMMELEN J, O’BRIEN M, GRUYER D, et al. Autonomous vehicle perception: The technology of today and tomorrow[J]. Transportation research part C: emerging technologies, 2018, 89: 384-406.
[14] COELINGH E, EIDEHALL A, BENGTSSON M. Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking[C]//13th International IEEE Conference on Intelligent Transportation Systems. IEEE, 2010: 155-160.
[15] GUO C, MEGURO J, YAMAGUCHI K, et al. Improved lane detection based on past vehicle trajectories[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, 2014: 1956-1963.
[16] HSIAO P Y, YEH C W, HUANG S S, et al. A portable vision-based real-time lane departure warning system: day and night[J]. IEEE Transactions on Vehicular Technology, 2008, 58(4): 2089-2094.
[17] MARSDEN G, MCDONALD M, BRACKSTONE M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(1): 33-51.
[18] KRISHER T, DURBIN D. Tesla update halts automatic steering if driver inattentive[M]. Sep, 2016: 1-5.
[19] VAN AREM B, VAN DRIEL C J, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on intelligent transportation systems, 2006, 7(4): 429-436.
[20] KAVATHEKAR P, CHEN Y. Vehicle platooning: A brief survey and categorization[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: volume 54808. 2011: 829-845.
[21] JIA D, LU K, WANG J, et al. A survey on platoon-based vehicular cyber-physical systems[J]. IEEE communications surveys & tutorials, 2015, 18(1): 263-284.
[22] VAHIDI A, ESKANDARIAN A. Research advances in intelligent collision avoidance and adaptive cruise control[J]. IEEE transactions on intelligent transportation systems, 2003, 4(3): 143-153.
[23] DEY K C, YAN L, WANG X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (cacc)[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 491-509.
[24] POURMOHAMMAD-ZIA N, SCHULTE F, SOURAVLIAS D, et al. Platooning of automated ground vehicles to connect port and hinterland: A multi-objective optimization approach[C]//International Conference on Computational Logistics. Springer, 2020: 428-442.
[25] KIANFAR R, AUGUSTO B, EBADIGHAJARI A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE transactions on intelligent transportation systems, 2012, 13(3): 994-1007.
[26] ROBINSON T, CHAN E, COELINGH E. Operating platoons on public motorways: An introduction to the sartre platooning programme[C]//17th world congress on intelligent transport systems: volume 1. 2010: 1-12.
[27] TSUGAWA S, KATO S, AOKI K. An automated truck platoon for energy saving[C]//2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2011: 4109-4114.
[28] LI S E, ZHENG Y, LI K, et al. Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
[29] LI S E, ZHENG Y, LI K, et al. An overview of vehicular platoon control under the fourcomponent framework[C]//2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015: 286-291.
[30] PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 854-865.
[31] JIN I G, OROSZ G. Optimal control of connected vehicle systems with communication delay and driver reaction time[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(8): 2056-2070.
[32] LI S E, QIN X, LI K, et al. Robustness analysis and controller synthesis of homogeneous vehicular platoons with bounded parameter uncertainty[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 1014-1025.
[33] LIANG K Y, MÅRTENSSON J, JOHANSSON K H. Heavy-duty vehicle platoon formation for fuel efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1051-1061.
[34] LIANG C Y, PENG H. String stability analysis of adaptive cruise controlled vehicles[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000, 43(3): 671-677.
[35] SEILER P, PANT A, HEDRICK K. Disturbance propagation in vehicle strings[J]. IEEE Transactions on automatic control, 2004, 49(10): 1835-1842.
[36] MIDDLETON R H, BRASLAVSKY J H. String instability in classes of linear time invariant formation control with limited communication range[J]. IEEE Transactions on Automatic Control, 2010, 55(7): 1519-1530.
[37] LI S E, QIN X, ZHENG Y, et al. Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis[J]. IEEE Transactions on Control Systems Technology, 2017, 27(1): 206-220.
[38] 李柏. 复杂约束下自动驾驶车辆运动规划的计算最优控制方法研究[D]. 浙江大学, 2018.
[39] 秦晓辉. 多型通信拓扑下车辆队列分布式控制中的稳定性问题[D]. 清华大学, 2016.
[40] 刘阳. 基于博弈论的车辆队列运动协同分层控制算法研究[D]. 吉林大学, 2020.
[41] 边有钢. 复杂车-网-路条件下的多车系统分布式运动控制[D]. 清华大学, 2019.
[42] 胡林. 基于DSRC 的车辆主动式安全通信性能分析与资源分配[D]. 电子科技大学, 2020.
[43] ÅARZÉN K E. A simple event-based pid controller[J]. IFAC Proceedings Volumes, 1999, 32(2): 8687-8692.
[44] ÅSTRÖM K J, BERNHARDSSON B. Comparison of periodic and event based sampling for first-order stochastic systems[J]. IFAC Proceedings Volumes, 1999, 32(2): 5006-5011.
[45] CERVIN A, HENNINGSSON T. Scheduling of event-triggered controllers on a shared network[C]//2008 47th IEEE Conference on Decision and Control. IEEE, 2008: 3601-3606.
[46] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685.
[47] HEEMELS W P, JOHANSSON K H, TABUADA P. An introduction to event-triggered and self-triggered control[C]//2012 IEEE Conference on Decision and Control. IEEE, 2012: 3270-3285.
[48] GIRARD A. Dynamic triggering mechanisms for event-triggered control[J]. IEEE Transactions on Automatic Control, 2014, 60(7): 1992-1997.
[49] LIU D, YANG G H. A dynamic event-triggered control approach to leader-following consensus for linear multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(10): 6271-6279.
[50] DING L, HAN Q L, GE X, et al. An overview of recent advances in event-triggered consensus of multiagent systems[J]. IEEE transactions on cybernetics, 2017, 48(4): 1110-1123.
[51] ZHANG X M, HAN Q L, ZHANG B L. An overview and deep investigation on sampleddata-based event-triggered control and filtering for networked systems[J]. IEEE Transactions on industrial informatics, 2016, 13(1): 4-16.
[52] DOLK V S, PLOEG J, HEEMELS W M H. Event-triggered control for string-stable vehicle platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3486-3500.
[53] LIU Z, LI Z, GUO G, et al. Cooperative platoon control of heterogeneous vehicles under a novel event-triggered communication strategy[J]. IEEE Access, 2019, 7: 41172-41182.
[54] 高永峰. 非线性控制系统的事件触发机制设计[D]. 大连理工大学, 2017.
[55] 胡松林. 基于事件触发机制的网络化控制系统的分析与综合[D]. 华中科技大学, 2012.
[56] PARKINSON S, WARD P, WILSON K, et al. Cyber threats facing autonomous and connected vehicles: Future challenges[J]. IEEE transactions on intelligent transportation systems, 2017, 18(11): 2898-2915.
[57] DING D, WANG Z, HAN Q L, et al. Security control for discrete-time stochastic nonlinear systems subject to deception attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 48(5): 779-789.
[58] YANG H, JU S, XIA Y, et al. Predictive cloud control for networked multiagent systems with quantized signals under dos attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1345-1353.
[59] PANG Z H, LIU G P, ZHOU D, et al. Data-based predictive control for networked nonlinear systems with network-induced delay and packet dropout[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1249-1257.
[60] ZHANG D, FENG G. A new switched system approach to leader–follower consensus of heterogeneous linear multiagent systems with dos attack[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1258-1266.
[61] AMIN S, CÁRDENAS A A, SASTRY S S. Safe and secure networked control systems under denial-of-service attacks[C]//International Workshop on Hybrid Systems: Computation and Control. Springer, 2009: 31-45.
[62] ZHANG H, CHENG P, SHI L, et al. Optimal dos attack policy against remote state estimation [C]//52nd IEEE Conference on Decision and Control. IEEE, 2013: 5444-5449.
[63] BOGDANOSKI M, SUMINOSKI T, RISTESKI A. Analysis of the syn flood dos attack[J]. International Journal of Computer Network and Information Security (IJCNIS), 2013, 5(8): 1-11.
[64] SINGH A, JUNEJA D. Agent based preventive measure for udp flood attack in ddos attacks[J].International Journal of Engineering Science and Technology, 2010, 2(8): 3405-3411.
[65] GUPTA N, JAIN A, SAINI P, et al. Ddos attack algorithm using icmp flood[C]//2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, 2016: 4082-4084.
[66] SREERAM I, VUPPALA V P K. Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm[J]. Applied computing and informatics, 2019, 15(1): 59-66.
[67] WONG F, TAN C X. A survey of trends in massive ddos attacks and cloud-based mitigations [J]. International Journal of Network Security & Its Applications, 2014, 6(3): 49-57.
[68] BIRON Z A, DEY S, PISU P. Real-time detection and estimation of denial of service attack in connected vehicle systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3893-3902.
[69] MOUSAVIAN S, EROL-KANTARCI M, WU L, et al. A risk-based optimization model for electric vehicle infrastructure response to cyber attacks[J]. IEEE Transactions on Smart Grid, 2017, 9(6): 6160-6169.
[70] ZHANG D, SHEN Y P, ZHOU S Q, et al. Distributed secure platoon control of connected vehicles subject to dos attack: Theory and application[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(11): 7269-7278.
[71] ZHANG H, CHENG P, SHI L, et al. Optimal dos attack scheduling in wireless networked control system[J]. IEEE Transactions on Control Systems Technology, 2015, 24(3): 843-852.
[72] LIU R, HAO F, YU H. Optimal sinr-based dos attack scheduling for remote state estimation via adaptive dynamic programming approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(12): 7622-7632.
[73] 张恒. 信息物理系统安全理论研究[D]. 浙江大学, 2015.
[74] 李孟林. 信息物理系统中基于远程状态估计的拒绝服务攻击与防御问题研究[D]. 中国科学技术大学, 2021.
[75] LI T, CHEN B, YU L, et al. Active security control approach against dos attacks in cyberphysical systems[J]. IEEE Transactions on Automatic Control, 2020, 66(9): 4303-4310.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TP273
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335839
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
欧阳梓凯. 高速公路场景下的车辆编队控制[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930362-欧阳梓凯-机械与能源工(2669KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[欧阳梓凯]的文章
百度学术
百度学术中相似的文章
[欧阳梓凯]的文章
必应学术
必应学术中相似的文章
[欧阳梓凯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。