[1] ORGANIZATION W H, et al. Global status report on road safety 2018: summary[R]. World Health Organization, 2018: 1-20.
[2] GAO H, CHENG B, WANG J, et al. Object classification using cnn-based fusion of vision and lidar in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224-4231.
[3] ZHANG X, GAO H, XUE C, et al. Real-time vehicle detection and tracking using improved histogram of gradient features and kalman filters[J]. International Journal of Advanced Robotic Systems, 2018, 15(1): 1-9.
[4] GAO H, SHI G, XIE G, et al. Car-following method based on inverse reinforcement learning for autonomous vehicle decision-making[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-11.
[5] SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 187-210.
[6] LI L, LU Y, WANG R, et al. A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with mpc[J]. IEEE Transactions on Industrial Electronics, 2016, 64(4): 3389-3401.
[7] GUO H, LIU J, CAO D, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles[J]. Mechatronics, 2018, 50: 422-433.
[8] ZHENHAI G. The driver’s steering feel assessment using eeg and emg signals[J]. Neuro-Quantology, 2018, 16(2): 6-13.
[9] GAO Z, LI C, HU H, et al. Simulator study of young driver’s instinctive response of lower extremity to a collision[J]. Traffic injury prevention, 2016, 17(4): 423-429.
[10] PADEN B, ČÁP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.
[11] FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181.
[12] SINGH S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey[R]. 2015: 1-2.
[13] VAN BRUMMELEN J, O’BRIEN M, GRUYER D, et al. Autonomous vehicle perception: The technology of today and tomorrow[J]. Transportation research part C: emerging technologies, 2018, 89: 384-406.
[14] COELINGH E, EIDEHALL A, BENGTSSON M. Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking[C]//13th International IEEE Conference on Intelligent Transportation Systems. IEEE, 2010: 155-160.
[15] GUO C, MEGURO J, YAMAGUCHI K, et al. Improved lane detection based on past vehicle trajectories[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, 2014: 1956-1963.
[16] HSIAO P Y, YEH C W, HUANG S S, et al. A portable vision-based real-time lane departure warning system: day and night[J]. IEEE Transactions on Vehicular Technology, 2008, 58(4): 2089-2094.
[17] MARSDEN G, MCDONALD M, BRACKSTONE M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(1): 33-51.
[18] KRISHER T, DURBIN D. Tesla update halts automatic steering if driver inattentive[M]. Sep, 2016: 1-5.
[19] VAN AREM B, VAN DRIEL C J, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on intelligent transportation systems, 2006, 7(4): 429-436.
[20] KAVATHEKAR P, CHEN Y. Vehicle platooning: A brief survey and categorization[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: volume 54808. 2011: 829-845.
[21] JIA D, LU K, WANG J, et al. A survey on platoon-based vehicular cyber-physical systems[J]. IEEE communications surveys & tutorials, 2015, 18(1): 263-284.
[22] VAHIDI A, ESKANDARIAN A. Research advances in intelligent collision avoidance and adaptive cruise control[J]. IEEE transactions on intelligent transportation systems, 2003, 4(3): 143-153.
[23] DEY K C, YAN L, WANG X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (cacc)[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 491-509.
[24] POURMOHAMMAD-ZIA N, SCHULTE F, SOURAVLIAS D, et al. Platooning of automated ground vehicles to connect port and hinterland: A multi-objective optimization approach[C]//International Conference on Computational Logistics. Springer, 2020: 428-442.
[25] KIANFAR R, AUGUSTO B, EBADIGHAJARI A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE transactions on intelligent transportation systems, 2012, 13(3): 994-1007.
[26] ROBINSON T, CHAN E, COELINGH E. Operating platoons on public motorways: An introduction to the sartre platooning programme[C]//17th world congress on intelligent transport systems: volume 1. 2010: 1-12.
[27] TSUGAWA S, KATO S, AOKI K. An automated truck platoon for energy saving[C]//2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2011: 4109-4114.
[28] LI S E, ZHENG Y, LI K, et al. Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
[29] LI S E, ZHENG Y, LI K, et al. An overview of vehicular platoon control under the fourcomponent framework[C]//2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015: 286-291.
[30] PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 854-865.
[31] JIN I G, OROSZ G. Optimal control of connected vehicle systems with communication delay and driver reaction time[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(8): 2056-2070.
[32] LI S E, QIN X, LI K, et al. Robustness analysis and controller synthesis of homogeneous vehicular platoons with bounded parameter uncertainty[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 1014-1025.
[33] LIANG K Y, MÅRTENSSON J, JOHANSSON K H. Heavy-duty vehicle platoon formation for fuel efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1051-1061.
[34] LIANG C Y, PENG H. String stability analysis of adaptive cruise controlled vehicles[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000, 43(3): 671-677.
[35] SEILER P, PANT A, HEDRICK K. Disturbance propagation in vehicle strings[J]. IEEE Transactions on automatic control, 2004, 49(10): 1835-1842.
[36] MIDDLETON R H, BRASLAVSKY J H. String instability in classes of linear time invariant formation control with limited communication range[J]. IEEE Transactions on Automatic Control, 2010, 55(7): 1519-1530.
[37] LI S E, QIN X, ZHENG Y, et al. Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis[J]. IEEE Transactions on Control Systems Technology, 2017, 27(1): 206-220.
[38] 李柏. 复杂约束下自动驾驶车辆运动规划的计算最优控制方法研究[D]. 浙江大学, 2018.
[39] 秦晓辉. 多型通信拓扑下车辆队列分布式控制中的稳定性问题[D]. 清华大学, 2016.
[40] 刘阳. 基于博弈论的车辆队列运动协同分层控制算法研究[D]. 吉林大学, 2020.
[41] 边有钢. 复杂车-网-路条件下的多车系统分布式运动控制[D]. 清华大学, 2019.
[42] 胡林. 基于DSRC 的车辆主动式安全通信性能分析与资源分配[D]. 电子科技大学, 2020.
[43] ÅARZÉN K E. A simple event-based pid controller[J]. IFAC Proceedings Volumes, 1999, 32(2): 8687-8692.
[44] ÅSTRÖM K J, BERNHARDSSON B. Comparison of periodic and event based sampling for first-order stochastic systems[J]. IFAC Proceedings Volumes, 1999, 32(2): 5006-5011.
[45] CERVIN A, HENNINGSSON T. Scheduling of event-triggered controllers on a shared network[C]//2008 47th IEEE Conference on Decision and Control. IEEE, 2008: 3601-3606.
[46] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685.
[47] HEEMELS W P, JOHANSSON K H, TABUADA P. An introduction to event-triggered and self-triggered control[C]//2012 IEEE Conference on Decision and Control. IEEE, 2012: 3270-3285.
[48] GIRARD A. Dynamic triggering mechanisms for event-triggered control[J]. IEEE Transactions on Automatic Control, 2014, 60(7): 1992-1997.
[49] LIU D, YANG G H. A dynamic event-triggered control approach to leader-following consensus for linear multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(10): 6271-6279.
[50] DING L, HAN Q L, GE X, et al. An overview of recent advances in event-triggered consensus of multiagent systems[J]. IEEE transactions on cybernetics, 2017, 48(4): 1110-1123.
[51] ZHANG X M, HAN Q L, ZHANG B L. An overview and deep investigation on sampleddata-based event-triggered control and filtering for networked systems[J]. IEEE Transactions on industrial informatics, 2016, 13(1): 4-16.
[52] DOLK V S, PLOEG J, HEEMELS W M H. Event-triggered control for string-stable vehicle platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3486-3500.
[53] LIU Z, LI Z, GUO G, et al. Cooperative platoon control of heterogeneous vehicles under a novel event-triggered communication strategy[J]. IEEE Access, 2019, 7: 41172-41182.
[54] 高永峰. 非线性控制系统的事件触发机制设计[D]. 大连理工大学, 2017.
[55] 胡松林. 基于事件触发机制的网络化控制系统的分析与综合[D]. 华中科技大学, 2012.
[56] PARKINSON S, WARD P, WILSON K, et al. Cyber threats facing autonomous and connected vehicles: Future challenges[J]. IEEE transactions on intelligent transportation systems, 2017, 18(11): 2898-2915.
[57] DING D, WANG Z, HAN Q L, et al. Security control for discrete-time stochastic nonlinear systems subject to deception attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 48(5): 779-789.
[58] YANG H, JU S, XIA Y, et al. Predictive cloud control for networked multiagent systems with quantized signals under dos attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1345-1353.
[59] PANG Z H, LIU G P, ZHOU D, et al. Data-based predictive control for networked nonlinear systems with network-induced delay and packet dropout[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1249-1257.
[60] ZHANG D, FENG G. A new switched system approach to leader–follower consensus of heterogeneous linear multiagent systems with dos attack[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1258-1266.
[61] AMIN S, CÁRDENAS A A, SASTRY S S. Safe and secure networked control systems under denial-of-service attacks[C]//International Workshop on Hybrid Systems: Computation and Control. Springer, 2009: 31-45.
[62] ZHANG H, CHENG P, SHI L, et al. Optimal dos attack policy against remote state estimation [C]//52nd IEEE Conference on Decision and Control. IEEE, 2013: 5444-5449.
[63] BOGDANOSKI M, SUMINOSKI T, RISTESKI A. Analysis of the syn flood dos attack[J]. International Journal of Computer Network and Information Security (IJCNIS), 2013, 5(8): 1-11.
[64] SINGH A, JUNEJA D. Agent based preventive measure for udp flood attack in ddos attacks[J].International Journal of Engineering Science and Technology, 2010, 2(8): 3405-3411.
[65] GUPTA N, JAIN A, SAINI P, et al. Ddos attack algorithm using icmp flood[C]//2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, 2016: 4082-4084.
[66] SREERAM I, VUPPALA V P K. Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm[J]. Applied computing and informatics, 2019, 15(1): 59-66.
[67] WONG F, TAN C X. A survey of trends in massive ddos attacks and cloud-based mitigations [J]. International Journal of Network Security & Its Applications, 2014, 6(3): 49-57.
[68] BIRON Z A, DEY S, PISU P. Real-time detection and estimation of denial of service attack in connected vehicle systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3893-3902.
[69] MOUSAVIAN S, EROL-KANTARCI M, WU L, et al. A risk-based optimization model for electric vehicle infrastructure response to cyber attacks[J]. IEEE Transactions on Smart Grid, 2017, 9(6): 6160-6169.
[70] ZHANG D, SHEN Y P, ZHOU S Q, et al. Distributed secure platoon control of connected vehicles subject to dos attack: Theory and application[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(11): 7269-7278.
[71] ZHANG H, CHENG P, SHI L, et al. Optimal dos attack scheduling in wireless networked control system[J]. IEEE Transactions on Control Systems Technology, 2015, 24(3): 843-852.
[72] LIU R, HAO F, YU H. Optimal sinr-based dos attack scheduling for remote state estimation via adaptive dynamic programming approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(12): 7622-7632.
[73] 张恒. 信息物理系统安全理论研究[D]. 浙江大学, 2015.
[74] 李孟林. 信息物理系统中基于远程状态估计的拒绝服务攻击与防御问题研究[D]. 中国科学技术大学, 2021.
[75] LI T, CHEN B, YU L, et al. Active security control approach against dos attacks in cyberphysical systems[J]. IEEE Transactions on Automatic Control, 2020, 66(9): 4303-4310.
修改评论