中文版 | English
题名

Learning Corruption-Invariant Representation: From A Data-Centric Perspective

其他题名
基于数据驱动的稳健视觉表征学习
姓名
姓名拼音
CHEN Minghui
学号
11930379
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
郑锋
导师单位
计算机科学与工程系
论文答辩日期
2022-05-08
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

It is believed that the inherent bias of datasets is the primary reason why current deep models are not stable towards distributional shifts.  Meanwhile, evaluation and improvement of robustness are significantly hindered by dataset bias.  Due to the difficulty of disentangling spurious and useful feature from deep models, it is challenging to debias dataset by applying model-based approaches.  The most successful methods for reducing bias in datasets are typically data-driven. 
This thesis focuses primarily on two data-centric methodologies, data augmentation and benchmarking, to enhance the data quality of the training set and test set in order to construct and evaluate a robust model. 

This thesis focuses on corruption robustness in computer vision, which aims to make the learned representation insensitive to different types of corrupted images.  Data augmentation is one of the most successful techniques for improving the model's robustness to corrupted images. 
However, common augmentations generate samples that deviate significantly from the underlying data manifold.  As a consequence, performance is biased towards certain forms of corruption.  To overcome this problem, we propose a method called vicinal transfer augmentation (VITA) for generating diverse on-manifold samples.  The proposed VITA is composed of two complementary components: tangent transfer and multi-source vicinal sample integration.  As shown in detailed experiments on corruption benchmarks, our proposed VITA greatly outperforms existing augmentations.

When deploying models in safety-critical applications, it is pivotal to understand its robustness against a diverse array of corruptions.  Person re-identification (ReID) is widely applied in security and requires a high level of robustness.  However, current evaluations of ReID take only clean datasets into account and neglect images in various corrupted forms.  Here, we establish five ReID benchmarks for learning corruption-invariant representations.  We are the first in the field of ReID to investigate corruption-invariant learning in single- and cross-modality datasets.  After testing the robustness of 21 popular ReID methods, we found that several classical architectural designs and augmentations contribute little to the robustness improvement.  Furthermore, we discovered that the model's ability to generalize across datasets improves as its corruption robustness increases.
 

其他摘要

  现有深度学习模型在数据分布偏移的情况下普遍表现不稳健,这给实际部署模型带来很大的挑战。在数据收集和标注阶段引入的数据集偏差是深度模型表现不稳健的主要障碍,它会导致深度学习模型挖掘到仅适用于特定数据分布的伪特征。同时,数据集偏差还会影响模型性能的评估,给模型部署带来潜在安全隐患。目前较为有效的缓解数据集偏差的策略是基于数据驱动的方法,它们在模型输入端通过对数据进行额外处理来减少模型学习到的伪特征。因此,本论文将基于数据驱动的研究方法,即数据增强和基准测试,深入探讨如何更好地提升训练集和测试集的数据质量,进而更好地学习稳健视觉表征和评测模型稳健性。本文聚焦于计算机视觉领域中图像损坏场景下的稳健性研究,其目的在于使模型面对各种损坏图像具有稳健的表征能力。数据增强是众多方法中较为有效的提高模型稳健性的方法。然而,现有的数据增强策略产生的样本通常偏离了真实的数据分布,继而导致模型在面对不同损坏模式时性能表现不均衡。为了解决这个问题,本文提出了一种基于邻域信息共享的增强方法,该方法由两部分组成:切向量共享和多源邻域样本整合。切向量共享以数据增强的形式施加局部不变性降低了模型的复杂度,而多源邻域样本整合则通过生成对抗网络提升了样本的多样性。这种增强方法在主流的损坏图像分类数据集上取得了优异的性能。

  另一方面,在关乎人类切身安全的实际场景中部署模型时,掌握模型对各种图像损坏的稳健性十分关键。而行人重识别是应用较为广泛且对于模型稳健性要求较高的任务。但是,目前行人重识别模型仅在干净数据集上评估而忽略了各种图像损坏场景下的模型表现。为此,本文建立了五个用于学习稳健表征的行人重识别新基准。针对行人重识别任务,本文在单模态和跨模态数据集中对损坏图像的稳健性进行详尽的研究。在测试了主流的21种行人重识别方法的稳健性后,本文发现一些经典的模型架构设计和数据增强策略并不能有效地提升模型稳健性。同时,本工作还发现在行人重识别任务上,模型的跨数据集泛化能力与稳健性呈正相关关系,这表明了图像损坏场景下的稳健性可作为实际部署模型的有效指标。
 

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[J]. CoRR,2019, abs/1907.02893.
[2] ZHU H, XU J, LIU S, et al. Federated learning on non-iid data: A survey[J]. Neurocomputing, 2021, 465: 371-390.
[3] MINTUN E, KIRILLOV A, XIE S. On interaction between augmentations and corruptions in natural corruption robustness[J]. CoRR, 2021, abs/2102.11273.
[4] HENDRYCKS D, DIETTERICH T G. Benchmarking neural network robustness to common corruptions and perturbations[C]//ICLR (Poster). OpenReview.net, 2019.
[5] KOH P W, SAGAWA S, MARKLUND H, et al. WILDS: A benchmark of in-the-wild distribution shifts[C]//Proceedings of Machine Learning Research: volume139 ICML. PMLR, 2021: 5637-5664.
[6] ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of Machine Learning Research: volume 97 ICML. PMLR, 2019: 7324-7334.
[7] VASCONCELOS C, LAROCHELLE H, DUMOULIN V, et al. An effective anti-aliasing approach for residual networks[J]. CoRR, 2020, abs/2011.10675.
[8] VASCONCELOS C, LAROCHELLE H, DUMOULIN V, et al. Impact of aliasing on generalization in deep convolutional networks[C]//ICCV. IEEE, 2021: 10509-10518.
[9] DAPELLO J, MARQUES T, SCHRIMPF M, et al. Simulating a primary visual cortex at the front of cnns improves robustness to image perturbations[C]//NeurIPS. 2020.
[10] BAIDYA A, DAPELLO J, DICARLO J J, et al. Combining different V1 brain model variants to improve robustness to image corruptions in cnns[J]. CoRR, 2021, abs/2110.10645.
[11] LOPES R G, SMULLIN S J, CUBUK E D, et al. Affinity and diversity: Quantifying mechanisms of data augmentation[J]. CoRR, 2020, abs/2002.08973.
[12] RECHT B, ROELOFS R, SCHMIDT L, et al. Do CIFAR-10 classifiers generalize to cifar-10?[J]. CoRR, 2018, abs/1806.00451.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//NIPS. 2012: 1106-1114.
[14] XIE S, GIRSHICK R B, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//CVPR. IEEE Computer Society, 2017: 5987-5995.
[15] GEIRHOS R, TEMME C R M, RAUBER J, et al. Generalisation in humans and deep neural networks[C]//NeurIPS. 2018: 7549-7561.
[16] DAO T, GU A, RATNER A, et al. A kernel theory of modern data augmentation[C]// Proceedings of Machine Learning Research: volume 97 ICML. PMLR, 2019: 1528-1537.
[17] CHAPELLE O, WESTON J, BOTTOU L, et al. Vicinal risk minimization[C]//NIPS. MIT Press, 2000: 416-422.
[18] GOODFELLOWIJ,SHLENSJ,SZEGEDYC. Explainingandharnessingadversarialexamples[C]//ICLR (Poster). 2015.
[19] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant toadversarial attacks[C]//ICLR (Poster). OpenReview.net, 2018.
[20] DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks withcutout[J]. CoRR, 2017, abs/1708.04552.
[21] ZHANG H, CISSÉ M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]//ICLR (Poster). OpenReview.net, 2018.
[22] YUN S, HAN D, CHUN S, et al. Cutmix: Regularization strategy to train strong classifiers withlocalizable features[C]//ICCV. IEEE, 2019: 6022-6031.
[23] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. Imagenet-trained cnns are biased towardstexture; increasing shape bias improves accuracy and robustness[C]//ICLR. OpenReview.net,2019.
[24] RUSAK E, SCHOTT L, ZIMMERMANN R S, et al. A simple way to make neural networks ro-bust against diverse image corruptions[C]//Lecture Notes in Computer Science: volume 12348ECCV (3). Springer, 2020: 53-69.
[25] HENDRYCKS D, BASART S, MU N, et al. The many faces of robustness: A critical analysisof out-of-distribution generalization[J]. CoRR, 2020, abs/2006.16241.
[26] CUBUK E D, ZOPH B, MANÉ D, et al. Autoaugment: Learning augmentation strategies fromdata[C]//CVPR. Computer Vision Foundation / IEEE, 2019: 113-123.
[27] HENDRYCKS D, MU N, CUBUK E D, et al. Augmix: A simple data processing method toimprove robustness and uncertainty[C]//ICLR. OpenReview.net, 2020.
[28] BENGIOY,YAOL,ALAING,etal. Generalizeddenoisingauto-encodersasgenerativemodels[C]//NIPS. 2013: 899-907.
[29] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: A survey and outlook[J]. CoRR, 2020, abs/2001.04193.
[30] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: A benchmark[C]//ICCV.IEEE Computer Society, 2015: 1116-1124.
[31] LI W, ZHAO R, XIAO T, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]//CVPR. IEEE Computer Society, 2014: 152-159.
[32] WEI L, ZHANG S, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//CVPR. IEEE Computer Society, 2018: 79-88.
[33] NGUYEN D T, HONG H G, KIM K, et al. Person recognition system based on a combinationof body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605.
[34] WU A, ZHENG W, YU H, et al. Rgb-infrared cross-modality person re-identification[C]//ICCV. IEEE Computer Society, 2017: 5390-5399.
[35] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[C]//ICLR. OpenReview.net, 2021.
[36] HE S, LUO H, WANG P, et al. Transreid: Transformer-based object re-identification[J]. CoRR,2021, abs/2102.04378.
[37] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//AAAI. AAAIPress, 2020: 13001-13008.
[38] TAORI R, DAVE A, SHANKAR V, et al. Measuring robustness to natural distribution shifts inimage classification[C]//NeurIPS. 2020.
[39] VASILJEVIC I, CHAKRABARTI A, SHAKHNAROVICH G. Examining the impact of bluron recognition by convolutional networks[J]. CoRR, 2016, abs/1611.05760.
[40] DODGE S F, KARAM L J. A study and comparison of human and deep learning recognitionperformance under visual distortions[C]//ICCCN. IEEE, 2017: 1-7.
[41] AZULAY A, WEISS Y. Why do deep convolutional networks generalize so poorly to smallimage transformations?[J]. J. Mach. Learn. Res., 2019, 20: 184:1-184:25.
[42] HE F, TAO D. Recent advances in deep learning theory[J]. arXiv preprint arXiv:2012.10931,2020.
[43] SCHNEIDER S, RUSAK E, ECK L, et al. Improving robustness against common corruptionsby covariate shift adaptation[C]//NeurIPS. 2020.
[44] TANG Z, GAO Y, ZHU Y, et al. Selfnorm and crossnorm for out-of-distribution robustness[J].CoRR, 2021, abs/2102.02811.
[45] KAMANN C, ROTHER C. Increasing the robustness of semantic segmentation models withpainting-by-numbers[C]//Lecture Notes in Computer Science: volume 12355 ECCV (10).Springer, 2020: 369-387.
[46] MICHAELIS C, MITZKUS B, GEIRHOS R, et al. Benchmarking robustness in object detec-tion: Autonomous driving when winter is coming[J]. CoRR, 2019, abs/1907.07484.
[47] BIRODKAR V, MOBAHI H, KRISHNAN D, et al. A closed-form learned pooling for deepclassification networks[J]. CoRR, 2019, abs/1906.03808.
[48] LI Q, SHEN L, GUO S, et al. Wavecnet: Wavelet integrated cnns to suppress aliasing effect fornoise-robust image classification[J]. IEEE Trans. Image Process., 2021, 30: 7074-7089.
[49] HOSSAIN M T, TENG S W, SOHEL F, et al. Robust image classification using a low-passactivation function and DCT augmentation[J]. IEEE Access, 2021, 9: 86460-86474.
[50] YU H, LIU A, LIU X, et al. Pda: Progressive data augmentation for general robustness of deepneural networks[J]. arXiv preprint arXiv:1909.04839, 2019.
[51] LEE J, ZAHEER M Z, ASTRID M, et al. Smoothmix: a simple yet effective data augmentationto train robust classifiers[C]//CVPR Workshops. Computer Vision Foundation / IEEE, 2020:3264-3274.
[52] WONG E, KOLTER J Z. Learning perturbation sets for robust machine learning[C]//ICLR.OpenReview.net, 2021.
[53] XU Z, LIU D, YANG J, et al. Robust and generalizable visual representation learning viarandom convolutions[C]//ICLR. OpenReview.net, 2021.
[54] LAUGROS A, CAPLIER A, OSPICI M. Addressing neural network robustness with mixup andtargeted labeling adversarial training[C]//Lecture Notes in Computer Science: volume 12539ECCV Workshops (5). Springer, 2020: 178-195.
[55] LIN H, VAN ZUIJLEN M, PONT S C, et al. What can style transfer and paintings do for modelrobustness?[C]//CVPR. Computer Vision Foundation / IEEE, 2021: 11028-11037.
[56] CHEN X, XIE C, TAN M, et al. Robust and accurate object detection via adversarial learning[C]//CVPR. Computer Vision Foundation / IEEE, 2021: 16622-16631.
[57] CALIAN D A, STIMBERG F, WILES O, et al. Defending against image corruptions throughadversarial augmentations[J]. CoRR, 2021, abs/2104.01086.
[58] WANG J, JIN S, LIU W, et al. When human pose estimation meets robustness: Adversarialalgorithms and benchmarks[C]//CVPR. Computer Vision Foundation / IEEE, 2021: 11855-11864.
[59] KAMANN C, ROTHER C. Benchmarking the robustness of semantic segmentation models[C]//CVPR. IEEE, 2020: 8825-8835.
[60] WANG J, JIN S, LIU W, et al. When human pose estimation meets robustness: Adversarialalgorithms and benchmarks[J]. CoRR, 2021, abs/2105.06152.
[61] ZHANG S, NI Q, LI B, et al. Corruption-robust enhancement of deep neural networks forclassificationofperipheralbloodsmearimages[C]//LectureNotesinComputerScience: volume12265 MICCAI (5). Springer, 2020: 372-381.
[62] NAVARRO F, WATANABE C, SHIT S, et al. Evaluating the robustness of self-supervisedlearning in medical imaging[J]. CoRR, 2021, abs/2105.06986.
[63] KAROF,YEOT,ATANOVA,etal. 3dcommoncorruptionsanddataaugmentation[J]. CoRR,2022, abs/2203.01441.
[64] RENJ,PANL,LIUZ. Benchmarkingandanalyzingpointcloudclassificationundercorruptions[J]. CoRR, 2022, abs/2202.03377.
[65] RYCHALSKA B, BASAJ D, GOSIEWSKA A, et al. Models in the wild: On corruption robust-ness of neural NLP systems[C]//Lecture Notes in Computer Science: volume 11955 ICONIP(3). Springer, 2019: 235-247.
[66] SIMARD P Y, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networksapplied to visual document analysis[C]//ICDAR. IEEE Computer Society, 2003: 958-962.
[67] SHORTENC,KHOSHGOFTAARTM. Asurveyonimagedataaugmentationfordeeplearning[J]. J. Big Data, 2019, 6: 60.
[68] CHENP,LIUS,ZHAOH,etal. Gridmaskdataaugmentation[J]. CoRR,2020,abs/2001.04086.
[69] YOO J, AHN N, SOHN K. Rethinking data augmentation for image super-resolution: A com-prehensive analysis and a new strategy[C]//CVPR. Computer Vision Foundation / IEEE, 2020:8372-8381.
[70] INOUE H. Data augmentation by pairing samples for images classification[J]. CoRR, 2018,abs/1801.02929.
[71] HARRIS E, MARCU A, PAINTER M, et al. Understanding and enhancing mixed sample dataaugmentation[J]. CoRR, 2020, abs/2002.12047.
[72] KIM J, CHOO W, SONG H O. Puzzle mix: Exploiting saliency and local statistics for optimalmixup[C]//Proceedings of Machine Learning Research: volume 119 ICML. PMLR, 2020:5275-5285.
[73] HUANG S, WANG X, TAO D. Snapmix: Semantically proportional mixing for augmentingfine-grained data[C]//AAAI. AAAI Press, 2021: 1628-1636.
[74] UDDIN A F M S, MONIRA M S, SHIN W, et al. Saliencymix: A saliency guided data aug-mentation strategy for better regularization[C]//ICLR. OpenReview.net, 2021.
[75] ZHANG H, YU Y, JIAO J, et al. Theoretically principled trade-off between robustness andaccuracy[C]//Proceedings of Machine Learning Research: volume 97 ICML. PMLR, 2019:7472-7482.
[76] CHEN P, SHARMA Y, ZHANG H, et al. EAD: elastic-net attacks to deep neural networks viaadversarial examples[C]//AAAI. AAAI Press, 2018: 10-17.
[77] DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with momentum[C]//CVPR.Computer Vision Foundation / IEEE Computer Society, 2018: 9185-9193.
[78] JACKSON P T G, ABARGHOUEI A A, BONNER S, et al. Style augmentation: Data augmen-tation via style randomization[C]//CVPR Workshops. Computer Vision Foundation / IEEE,2019: 83-92.
[79] XU Y, GOEL A. Cross-domain image classification through neural-style transfer data augmen-tation[J]. CoRR, 2019, abs/1910.05611.
[80] ANTONIOU A, STORKEY A J, EDWARDS H. Augmenting image classifiers using dataaugmentation generative adversarial networks[C]//Lecture Notes in Computer Science: volume11141 ICANN (3). Springer, 2018: 594-603.
[81] WEIJW,SURIAWINATAAA,VAICKUSLJ,etal. Generativeimagetranslationfordataaug-mentation in colorectal histopathology images[C]//Proceedings of Machine Learning Research:volume 116 ML4H@NeurIPS. PMLR, 2019: 10-24.
[82] LIM S, KIM I, KIM T, et al. Fast autoaugment[C]//NeurIPS. 2019: 6662-6672.
[83] LI Y, HU G, WANG Y, et al. DADA: differentiable automatic data augmentation[J]. CoRR,2020, abs/2003.03780.
[84] CUBUKED,ZOPHB,SHLENSJ,etal. Randaugment: Practicalautomateddataaugmentationwith a reduced search space[C]//NeurIPS. 2020.
[85] RUSAK E, SCHNEIDER S, GEHLER P V, et al. Adapting imagenet-scale models to complexdistribution shifts with self-learning[J]. CoRR, 2021, abs/2104.12928.
[86] LAUGROS A, CAPLIER A, OSPICI M. Using the overlapping score to improve corruptionbenchmarks[C]//ICIP. IEEE, 2021: 959-963.
[87] SANTURKARS,TSIPRASD,MADRYA. BREEDS:benchmarksforsubpopulationshift[C]//ICLR. OpenReview.net, 2021.
[88] YE N, LI K, HONG L, et al. Ood-bench: Benchmarking and understanding out-of-distributiongeneralization datasets and algorithms[J]. CoRR, 2021, abs/2106.03721.
[89] HE Y, SHEN Z, CUI P. Towards non-i.i.d. image classification: A dataset and baselines[J].Pattern Recognit., 2021, 110: 107383.
[90] LI X, ZHENG W, WANG X, et al. Multi-scale learning for low-resolution person re-identification[C]//ICCV. IEEE Computer Society, 2015: 3765-3773.
[91] WANG Y, WANG L, YOU Y, et al. Resource aware person re-identification across multipleresolutions[C]//CVPR. IEEE Computer Society, 2018: 8042-8051.
[92] LI S, XIAO T, LI H, et al. Person search with natural language description[C]//CVPR. IEEEComputer Society, 2017: 5187-5196.
[93] CHEN T, DING S, XIE J, et al. Abd-net: Attentive but diverse person re-identification[C]//ICCV. IEEE, 2019: 8350-8360.
[94] CHEN B, DENG W, HU J. Mixed high-order attention network for person re-identification[C]//ICCV. IEEE, 2019: 371-381.
[95] CHEN X, FU C, ZHAO Y, et al. Salience-guided cascaded suppression network for personre-identification[C]//CVPR. Computer Vision Foundation / IEEE, 2020: 3297-3307.
[96] ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//ICCV. IEEE, 2019: 3701-3711.
[97] HERZOGF,JIX,TEEPET,etal. Lightweightmulti-branchnetworkforpersonre-identification[J]. CoRR, 2021, abs/2101.10774.
[98] XIE B, WU X, ZHANG S, et al. Learning diverse features with part-level resolution for personre-identification[C]//Lecture Notes in Computer Science: volume 12307 PRCV (3). Springer,2020: 16-28.
[99] SUN Y, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined partpooling (and A strong convolutional baseline)[C]//Lecture Notes in Computer Science: volume11208 ECCV (4). Springer, 2018: 501-518.
[100] WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granular-ities for person re-identification[C]//ACM Multimedia. ACM, 2018: 274-282.
[101] ZHENG F, DENG C, SUN X, et al. Pyramidal person re-identification via multi-loss dynamictraining[C]//CVPR. Computer Vision Foundation / IEEE, 2019: 8514-8522.
[102] PARK H, HAM B. Relation network for person re-identification[C]//AAAI. AAAI Press, 2020:11839-11847.
[103] SUN Y, XU Q, LI Y, et al. Perceive where to focus: Learning visibility-aware part-level featuresfor partial person re-identification[C]//CVPR. Computer Vision Foundation / IEEE, 2019: 393-402.
[104] LUO H, JIANG W, ZHANG X, et al. Alignedreid++: Dynamically matching local informationfor person re-identification[J]. Pattern Recognit., 2019, 94: 53-61.
[105] YU F, JIANG X, GONG Y, et al. Devil’s in the details: Aligning visual clues for conditionalembedding in person re-identification[J]. arXiv preprint arXiv:2009.05250, 2020.
[106] ZHANG Z, LAN C, ZENG W, et al. Relation-aware global attention for person re-identification[C]//CVPR. Computer Vision Foundation / IEEE, 2020: 3183-3192.
[107] HOU R, MA B, CHANG H, et al. Interaction-and-aggregation network for person re-identification[C]//CVPR. Computer Vision Foundation / IEEE, 2019: 9317-9326.
[108] SHARMA C, KAPIL S R, CHAPMAN D. Person re-identification with a locally aware trans-former[J]. CoRR, 2021, abs/2106.03720.
[109] BRYAN B, GONG Y, ZHANG Y, et al. Second-order non-local attention networks for personre-identification[C]//ICCV. IEEE, 2019: 3759-3768.
[110] ZHOU S, WANG F, HUANG Z, et al. Discriminative feature learning with consistent attentionregularization for person re-identification[C]//ICCV. IEEE, 2019: 8039-8048.
[111] LUO C, CHEN Y, WANG N, et al. Spectral feature transformation for person re-identification[C]//ICCV. IEEE, 2019: 4975-4984.
[112] ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]//CVPR. IEEEComputer Society, 2017: 3346-3355.
[113] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. CoRR, 2017, abs/1703.07737.
[114] LIAO S, LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]//ICCV. IEEE Computer Society, 2015: 3685-3693.
[115] CHENW,CHENX,ZHANGJ,etal. Beyondtripletloss: Adeepquadrupletnetworkforpersonre-identification[C]//CVPR. IEEE Computer Society, 2017: 1320-1329.
[116] XIAO Q, LUO H, ZHANG C. Margin sample mining loss: A deep learning based method forperson re-identification[J]. CoRR, 2017, abs/1710.00478.
[117] SUN Y, CHENG C, ZHANG Y, et al. Circle loss: A unified perspective of pair similarityoptimization[C]//CVPR. Computer Vision Foundation / IEEE, 2020: 6397-6406.
[118] ZHONG Z, ZHENG L, CAO D, et al. Re-ranking person re-identification with k-reciprocalencoding[C]//CVPR. IEEE Computer Society, 2017: 3652-3661.
[119] BAI S, BAI X, TIAN Q. Scalable person re-identification on supervised smoothed manifold[C]//CVPR. IEEE Computer Society, 2017: 3356-3365.
[120] SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for personre-identification with expanded cross neighborhood re-ranking[C]//CVPR. Computer VisionFoundation / IEEE Computer Society, 2018: 420-429.
[121] BENGIOY,MONPERRUSM. Non-localmanifoldtangentlearning[C]//NIPS. 2004: 129-136.
[122] LASSERRE J A, BISHOP C M, MINKA T P. Principled hybrids of generative and discrimi-native models[C]//CVPR (1). IEEE Computer Society, 2006: 87-94.
[123] SIMARD P Y, VICTORRI B, LECUN Y, et al. Tangent prop - A formalism for specifyingselected invariances in an adaptive network[C]//NIPS. Morgan Kaufmann, 1991: 895-903.
[124] SIMARDPY,LECUNY,DENKERJS,etal. Transformationinvarianceinpatternrecognition-tangentdistanceandtangentpropagation[M]//LectureNotesinComputerScience: volume1524Neural Networks: Tricks of the Trade. Springer, 1996: 239-27.
[125] CARLINI N, WAGNER D A. Towards evaluating the robustness of neural networks[C]//IEEESymposium on Security and Privacy. IEEE Computer Society, 2017: 39-57.
[126] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS. 2014: 2672-2680.
[127] ZHU J, ZHANG R, PATHAK D, et al. Toward multimodal image-to-image translation[C]//NIPS. 2017: 465-476.
[128] ISOLA P, ZHU J, ZHOU T, et al. Image-to-image translation with conditional adversarial net-works[C]//CVPR. IEEE Computer Society, 2017: 5967-5976.
[129] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedi-cal image segmentation[C]//Lecture Notes in Computer Science: volume 9351 MICCAI (3).Springer, 2015: 234-241.
[130] DING G W, WANG L, JIN X. Advertorch v0. 1: An adversarial robustness toolbox based onpytorch[J]. arXiv preprint arXiv:1902.07623, 2019.
[131] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant toadversarial attacks[J]. arXiv preprint arXiv:1706.06083, 2017.
[132] GOODFELLOWIJ,SHLENSJ,SZEGEDYC. Explainingandharnessingadversarialexamples[J]. arXiv preprint arXiv:1412.6572, 2014.
[133] KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial machine learning at scale[J]. arXivpreprint arXiv:1611.01236, 2016.
[134] DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 9185-9193.
[135] CARLININ,WAGNERD. Towardsevaluatingthe robustnessof neuralnetworks[C]//2017ieeesymposium on security and privacy (sp). IEEE, 2017: 39-57.
[136] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//CVPR. IEEE Computer Society, 2009: 248-255.
[137] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: The allconvolutional net[C]//ICLR (Workshop). 2015.
[138] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//CVPR. IEEE Computer Society, 2017: 2261-2269.
[139] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]//BMVC. BMVA Press, 2016.
[140] ZHAOL,LIUT,PENGX,etal. Maximum-entropyadversarialdataaugmentationforimprovedgeneralization and robustness[C]//NeurIPS. 2020.
[141] LOPES R G, YIN D, POOLE B, et al. Improving robustness without sacrificing accuracy withpatch gaussian augmentation[J]. CoRR, 2019, abs/1906.02611.
[142] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv preprint arXiv:1406.2661, 2014.
[143] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[J].arXiv preprint arXiv:1704.00028, 2017.
[144] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings ofthe IEEE international conference on computer vision. 2017: 2794-2802.
[145] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedicalimage segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
[146] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[147] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarialnetworks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2017: 1125-1134.
[148] ZHU J Y, ZHANG R, PATHAK D, et al. Toward multimodal image-to-image translation[J].arXiv preprint arXiv:1711.11586, 2017.
[149] GILMER J, FORD N, CARLINI N, et al. Adversarial examples are a natural consequence oftest error in noise[C]//Proceedings of Machine Learning Research: volume 97 ICML. PMLR,2019: 2280-2289.
[150] MOOSAVI-DEZFOOLI S, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[C]//CVPR. IEEE Computer Society, 2017: 86-94.
[151] ZHANG J, XU X, HAN B, et al. Attacks which do not kill training make adversarial learningstronger[C]//Proceedings of Machine Learning Research: volume 119 ICML. PMLR, 2020:11278-11287.
[152] HENDRYCKS D, MU N, CUBUK E D, et al. Augmix: A simple data processing method toimprove robustness and uncertainty[J]. arXiv preprint arXiv:1912.02781, 2019.
[153] ATHALYE A, CARLINI N, WAGNER D A. Obfuscated gradients give a false sense of se-curity: Circumventing defenses to adversarial examples[C]//Proceedings of Machine LearningResearch: volume 80 ICML. PMLR, 2018: 274-283.
[154] WANG X, DORETTO G, SEBASTIAN T, et al. Shape and appearance context modeling[C]//ICCV. IEEE Computer Society, 2007: 1-8.
[155] HE K, ZHANG X, REN S, et al. Deep residual learning forimage recognition[C]//CVPR. IEEEComputer Society, 2016: 770-778.
[156] LUOH,GUY,LIAOX,etal. Bagoftricksandastrongbaselinefordeeppersonre-identification[C]//CVPR Workshops. Computer Vision Foundation / IEEE, 2019: 1487-1495.
[157] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//NIPS. 2017:5998-6008.
[158] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distil-lation through attention[C]//Proceedings of Machine Learning Research: volume 139 ICML.PMLR, 2021: 10347-10357.
[159] ZHENG Z, ZHENG L, YANG Y. A discriminatively learned CNN embedding for person rei-dentification[J]. ACM Trans. Multim. Comput. Commun. Appl., 2018, 14(1): 13:1-13:20.
[160] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducinginternal covariate shift[C]//JMLR Workshop and Conference Proceedings: volume 37 ICML.JMLR.org, 2015: 448-456.
[161] DAI Z, CHEN M, GU X, et al. Batch dropblock network for person re-identification and beyond[C]//ICCV. IEEE, 2019: 3690-3700.
[162] GONGY,ZENGZ. Aneffectivedataaugmentationforpersonre-identification[J]. CoRR,2021,abs/2101.08533.
[163] GONG Y, ZENG Z, CHEN L, et al. A person re-identification data augmentation method withadversarial defense effect[J]. CoRR, 2021, abs/2101.08783.
[164] QUISPE R, PEDRINI H. Top-db-net: Top dropblock for activation enhancement in personre-identification[C]//ICPR. IEEE, 2020: 2980-2987.
[165] FU D, CHEN D, BAO J, et al. Unsupervised pre-training for person re-identification[J]. CoRR,2020, abs/2012.03753.
[166] PAN X, LUO P, SHI J, et al. Two at once: Enhancing learning and generalization capacities viaibn-net[C]//Lecture Notes in Computer Science: volume 11208 ECCV (4). Springer, 2018:484-500.
[167] HE L, LIAO X, LIU W, et al. Fastreid: A pytorch toolbox for general instance re-identification[J]. CoRR, 2020, abs/2006.02631.
[168] GE Y, ZHU F, CHEN D, et al. Self-paced contrastive learning with hybrid memory for domainadaptive object re-id[C]//NeurIPS. 2020.
[169] RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Lecture Notes in Computer Science: volume 9914 ECCVWorkshops (2). 2016: 17-35.
[170] MERLER M, RATHA N K, FERIS R S, et al. Diversity in faces[J]. CoRR, 2019,abs/1901.10436.
[171] ORHAN A E. Robustness properties of facebook’s resnext WSL models[J]. CoRR, 2019,abs/1907.07640.
[172] HERMANN K L, CHEN T, KORNBLITH S. The origins and prevalence of texture bias inconvolutional neural networks[C]//NeurIPS. 2020.
[173] LI Y, YU Q, TAN M, et al. Shape-texture debiased neural network training[C]//ICLR. Open-Review.net, 2021.
[174] MUMMADI C K, SUBRAMANIAM R, HUTMACHER R, et al. Does enhanced shape biasimprove neural network robustness to common corruptions?[C]//ICLR. OpenReview.net, 2021.
[175] HENDRYCKS D, ZHAO K, BASART S, et al. Natural adversarial examples[C]//CVPR. Com-puter Vision Foundation / IEEE, 2021: 15262-15271.
[176] VAN DER WILK M, BAUER M, JOHN S T, et al. Learning invariances using the marginallikelihood[C]//NeurIPS. 2018: 9960-9970.
[177] SCHWÖBEL P E, JØRGENSEN M, OBER S W, et al. Last layer marginal likelihood for in-variance learning[J]. CoRR, 2021, abs/2106.07512.

所在学位评定分委会
计算机科学与工程系
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335840
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
Chen MH. Learning Corruption-Invariant Representation: From A Data-Centric Perspective[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930379-陈明辉-计算机科学与工(37434KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈明辉]的文章
百度学术
百度学术中相似的文章
[陈明辉]的文章
必应学术
必应学术中相似的文章
[陈明辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。