中文版 | English
题名

全球虚拟水流动对国家水资源短缺的影响研究

姓名
姓名拼音
ZHONG Rui
学号
11930600
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
刘俊国
导师单位
环境科学与工程学院
论文答辩日期
2022-05-12
论文提交日期
2022-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

水资源短缺威胁着人类社会的可持续发展。人类用水需求激增和气候变化加剧了全球水资源短缺状况。水资源短缺除了受到区域水资源禀赋的制约,还受到区域取用水量的影响。通常,区域总用水量包括直接用水和蕴含在商品或服务中的间接用水。使用区域当地水资源生产的商品或服务一部分满足了区域内部需求,另一部分通过国际贸易满足了区域外部需求。然而,已有研究在评估贸易对水资源短缺的影响时认为用水量本身并未受到国际贸易的影响,因而无法对其进行准确地评估。为了解决这一问题,本研究基于虚拟水贸易理论,评价了不受贸易影响和受到贸易影响的区域水短缺状况,量化了国际贸易对国家水资源短缺的影响并识别了国际贸易带来的水资源短缺转移关键路径。

本研究基于投入产出模型,结合全球189个国家/地区及26个部门的水资源消耗量,核算了各国家及部门间的虚拟水进出口量,厘清了全球虚拟水贸易格局;基于Logistic模型改进了被广泛使用的Falkenmark水短缺指标,评价了不受国际贸易影响的区域水短缺状况;将虚拟水净进口量作为区域“虚拟可用水量”,进一步改进该指标,评价了受到国际贸易影响的区域水短缺状况,量化了国际贸易对区域水短缺的净影响;基于改进的Falkenmark指标和稀缺加权的投入产出方法,核算了各国家/地区的虚拟稀缺水贸易量,厘清了全球虚拟稀缺水贸易格局,识别了关键国家/地区的水短缺转移关键路径。

结果显示,国际贸易在不同程度上缓解了32个高收入和中高收入国家的超过22亿人口面临的水短缺问题;但也让21个低收入和中低收入国家/地区的21亿人口面临更加严重的缺水问题。国际贸易对水短缺的影响主要受与食品相关的部门主导。此外,超过35%的水短缺从欧美、西亚和东亚的高收入国家/地区转移到南亚和北非等本身已存在一定缺水问题的中等偏下收入国家。研究还发现,与缺水国家邻近的国家/地区的国际贸易,在加剧该缺水国家的水资源短缺状况上发挥着重要作用。例如,约旦从埃及、叙利亚、黎巴嫩、沙特等严重缺水的邻国大量进口稀缺水,进一步加剧了这些缺水邻国的水资源短缺状况。

为保障全球变化背景下的水安全,处于国际贸易中不同角色的国家应当采取不同的调整措施:对于本身缺水但从更缺水区域大量进口水密集型产品的“压力转移型”国家/地区来说,应提高粮食自给率,丰富上游进口来源,并积极寻找替代商品;对于本身缺水但依然大量出口水密集型产品的“高成本”的国家/地区来说,应当提高农业生产技术水平以降低其虚拟水含量,推广水循环再利用设施以提高家庭和工业用水效率,并详细规划本国的国际贸易结构,兼顾经济利益的同时减少稀缺水出口。为保障水资源的可持续利用,全球各国应当协同管理伴随着国际贸易流动的“虚拟”水资源

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] VÖRÖSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561.
[2] VÖRÖSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources: Vulnerability from climate change and population growth[J/OL]. Science, 2000, 289(5477): 284-288.
[3] ZHAO X, LIU J, LIU Q, et al. Physical and virtual water transfers for regional water stress alleviation in China[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 1031-1035.
[4] DISTEFANO T, KELLY S. Are we in deep water? Water scarcity and its limits to economic growth[J/OL]. Ecological Economics, 2017, 142: 130-147.
[5] WADA Y, BIERKENS M F P. Sustainability of global water use: Past reconstruction and future projections[J/OL]. Environmental Research Letters, 2014, 9(10): 104003.
[6] ERCIN A E, HOEKSTRA A Y. Water footprint scenarios for 2050: A global analysis[J/OL]. Environment International, 2014, 64: 71-82.
[7] GRAFTON R Q, PITTOCK J, DAVIS R, et al. Global insights into water resources, climate change and governance[J/OL]. Nature Climate Change, 2013, 3(4): 315-321.
[8] GOSLING S N, ARNELL N W. A global assessment of the impact of climate change on water scarcity[J/OL]. Climatic Change, 2016, 134(3): 371-385.
[9] LIU J, YANG H, GOSLING S N, et al. Water scarcity assessments in the past, present, and future[J]. Earth’s future, 2017, 5(6): 545-559.
[10] MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J/OL]. Science Advances, 2016, 2(2): e1500323.
[11] ZHAO D, LIU J. A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 79: 40-46.
[12] WORLD ECONOMIC FORUM. The Global Risks Report 2015, 10th Edition[R]. Geneva, Switzerland, 2015.
[13] UNITED NATIONS. Sustainable Development Goals: 17 Goals to Transform Our World[EB/OL]. (2015). https://www.un.org/sustainabledevelopment/.
[14] HESS T M, LENNARD A T, DACCACHE A. Comparing local and global water scarcity information in determining the water scarcity footprint of potato cultivation in Great Britain[J]. Journal of Cleaner Production, 2015, 87: 666-674.
[15] VÖRÖSMARTY C J, HOEKSTRA A Y, BUNN S E, et al. Fresh water goes global[J]. Science, 2015, 349(6247): 478-479.
[16] DALIN C, KONAR M, HANASAKI N, et al. Evolution of the global virtual water trade network[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5989-5994.
[17] ALLAN J A. “Virtual water”: a long term solution for water short Middle Eastern economies?[M]. School of Oriental and African Studies, University of London London, 1997.
[18] BRINDHA K. International virtual water flows from agricultural and livestock products of India[J]. Journal of Cleaner Production, 2017, 161: 922-930.
[19] HOEKSTRA A Y, MEKONNEN M M. Imported water risk: the case of the UK[J]. Environmental Research Letters, 2016, 11(5): 55002.
[20] ALLAN J A. Water use and development in arid regions: Environment, economic development and water resource politics and policy[J/OL]. Review of European Community and International Environmental Law, 1996, 5(2): 107-115.
[21] ZHAO X U, YANG H, YANG Z, et al. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China[J]. Environmental Science & Technology, 2010, 44(23): 9150-9156.
[22] HOEKSTRA A Y. Virtual water: An introduction[J]. Virtual water trade, 2003, 13: 108.
[23] FENG K, HUBACEK K, PFISTER S, et al. Virtual scarce water in China[J/OL]. Environmental Science and Technology, 2014, 48(14): 7704-7713.
[24] WANG R, ZIMMERMAN J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world[J]. Environmental Science \& Technology, 2016, 50(10): 5143-5153.
[25] SCHERER L, PFISTER S. Global biodiversity loss by freshwater consumption and eutrophication from Swiss food consumption[J]. Environmental science \& technology, 2016, 50(13): 7019-7028.
[26] 程国栋. 虚拟水——中国水资源安全战略的新思路[D]. 2003.
[27] HOEKSTRA A Y. Water Footprint Assessment: Evolvement of a New ResearchField[J/OL]. Water Resources Management, 2017, 31(10): 3061-3081.
[28] 钱海洋. 中国区域间粮食贸易量化方法及虚拟水流动格局评价[D]. 西北农林科技大学, 2020.
[29] 吴普特, 高学睿, 赵西宁, 等. 实体水-虚拟水“二维三元”耦合流动理论基本框架[J]. 农业工程学报, 2016, 32(12): 1-10.
[30] HOEKSTRA A Y, HUNG P Q. Globalisation of water resources: international virtual water flows in relation to crop trade[J]. Global environmental change, 2005, 15(1): 45- 56.
[31] HANASAKI N, INUZUKA T, KANAE S, et al. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model[J]. Journal of Hydrology, 2010, 384(3-4): 232-244.
[32] HOEKSTRA A . ., CHAPAGAIN A K, ALDAYA M M, et al. Water footprint assessment manual--Setting the Global Standard. 2001 London[M]. Earthscan, 2011.
[33] MEKONNEN M M, HOEKSTRA A Y. A Global Assessment of the Water Footprint of Farm Animal Products[J/OL]. Ecosystems, 2012, 15(3): 401-415.
[34] CHAPAGAIN A K, HOEKSTRA A Y, SAVENIJE H H G. Water saving through international trade of agricultural products[J/OL]. Hydrology and Earth System Sciences, 2006, 10(3): 455-468.
[35] SCHWARZ J, MATHIJS E, MAERTENS M. Changing patterns of global agri-food trade and the economic efficiency of virtual water flows[J]. Sustainability, 2015, 7(5): 5542-5563.
[36] BIEWALD A, ROLINSKI S, LOTZE-CAMPEN H, et al. Valuing the impact of trade on local blue water[J]. Ecological Economics, 2014, 101: 43-53.
[37] 张信信, 刘俊国, 赵旭, 等. 黑河流域产业间虚拟水转移及其关联分析[J]. 干旱区 研究, 2018, 35(1): 27-34.
[38] MUBAKO S, LAHIRI S, LANT C. Input--output analysis of virtual water transfers: Case study of California and Illinois[J]. Ecological Economics, 2013, 93: 230-238.
[39] ZHAO D, TANG Y, LIU J, et al. Water footprint of Jing-Jin-Ji urban agglomeration in China[J/OL]. Journal of Cleaner Production, 2017, 167: 919-928.
[40] CHEN Z, CHEN G. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade[J/OL]. Ecological Indicators, 2013, 28: 142-149.
[41] SERRANO A, GUAN D, DUARTE R, et al. Virtual Water Flows in the EU27: A Consumption-based Approach[J/OL]. Journal of Industrial Ecology, 2016, 20(3): 547- 558.
[42] TIAN X, SARKIS J, GENG Y, et al. Evolution of China’s water footprint and virtual water trade: A global trade assessment[J/OL]. Environment International, 2018, 121(August): 178-188.
[43] LENZEN M, MORAN D, BHADURI A, et al. International trade of scarce water[J]. Ecological Economics, 2013, 94: 78-85.
[44] ZHAO H, QU S, GUO S, et al. Virtual water scarcity risk to global trade under climate change[J/OL]. Journal of Cleaner Production, 2019, 230: 1013-1026.
[45] WANG L, ZOU Z, LIANG S, et al. Virtual scarce water flows and economic benefits of the Belt and Road Initiative[J/OL]. Journal of Cleaner Production, 2020, 253: 119936.
[46] DU Y, FANG K, ZHAO D, et al. How far are we from possible ideal virtual water transfer? Evidence from assessing vulnerability of global virtual water trade[J/OL]. Science of The Total Environment, 2022, 828: 154493.
[47] QU S, LIANG S, KONAR M, et al. Virtual Water Scarcity Risk to the Global Trade System[J/OL]. Environmental Science and Technology, 2018, 52(2): 673-683.
[48] LIU Y, CHEN B, WEI W, et al. Global water use associated with energy supply, demand and international trade of China[J/OL]. Applied Energy, 2020, 257(September 2019): 113992.
[49] ZHANG X, ZHAO X, LI R, et al. Evaluating the vulnerability of physical and virtual water resource networks in China’s megacities[J/OL]. Resources, Conservation and Recycling, 2020, 161(May): 104972.
[50] ZHAO X, LI Y P, YANG H, et al. Measuring scarce water saving from interregional virtual water flows in China[J/OL]. Environmental Research Letters, 2018, 13(5).
[51] WICHELNS D. Virtual water: A helpful perspective, but not a sufficient policy criterion[J/OL]. Water Resources Management, 2010, 24(10): 2203-2219.
[52] ZHAO D, HUBACEK K, FENG K, et al. Explaining virtual water trade: A spatial- temporal analysis of the comparative advantage of land, labor and water in China[J/OL]. Water Research, 2019, 153: 304-314.
[53] FENG K, CHAPAGAIN A, SUH S, et al. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations[J]. Economic Systems Research, 2011, 23(4): 371-385.
[54] MCGLADE J, WERNER B, YOUNG M, et al. Measuring water use in a green economy, a report of the working group on water efficiency to the International Resource Panel[M]. United Nations Environment Programme, 2012.
[55] PFISTER S, KOEHLER A, HELLWEG S. Assessing the environmental impacts of freshwater consumption in LCA[J/OL]. Environmental Science and Technology, 2009, 43(11): 4098-4104.
[56] FRISCHKNECHT R, STEINER R, BRAUNSCHWEIG A, et al. Swiss ecological scarcity method: the new version 2006[J]. Berne, Switzerland, 2006.
[57] LIU X, DU H, ZHANG Z, et al. Can virtual water trade save water resources?[J/OL]. Water Research, 2019, 163: 114848.
[58] LIU J, ZHAO D. Three-dimensional water scarcity assessment by considering water quantity, water quality, and environmental flow requirements: Review and prospect[J/OL]. Kexue Tongbao/Chinese Science Bulletin, 2020, 65(36): 4251-4261.
[59] FALKENMARK M, LINDH G. How can we cope with the water resources situation by the year 2015?[J]. Ambio, 1974: 114-122.
[60] FALKENMARK M, LUNDQVIST J, WIDSTRAND C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development[C]//Natural resources forum: Vol. 13. 1989: 258-267.
[61] RASKIN P D, HANSEN E, MARGOLIS R M. Water and sustainability: Global patterns and long-range problems[C]//Natural Resources Forum: Vol. 20. 1996: 1-15.
[62] ALCAMO J, HENRICHS T, ROSCH T. World water in 2025[J]. World water series report, 2000, 2.
[63] FRISCHKNECHT R, BÜSSER S, KREWITT W. Environmental assessment of futuretechnologies: how to trim LCA to fit this goal?[J]. The International Journal of Life Cycle Assessment, 2009, 14(6): 584-588.
[64] OHISSON L. Water conflicts and social resource scarcity[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(3): 213-220.
[65] SECKLER D. World water demand and supply, 1990 to 2025: Scenarios and issues[M]. Iwmi, 1998.
[66] MOLDEN D, FRENKEN K, BARKER R, et al. Trends in water and agricultural development[R]. 2007.
[67] ROCKSTRÖM J, FALKENMARK M, KARLBERG L, et al. Future water availability for global food production: The potential of green water for increasing resilience to global change[J]. Water Resources Research, 2009, 45(7): 23.
[68] SULLIVAN C. Calculating a water poverty index[J]. World development, 2002, 30(7): 1195-1210.
[69] MEKONNEN M M, HOEKSTRA A Y. The green, blue and grey water footprint of crops and derived crop products[J/OL]. Hydrology and Earth System Sciences Discussions, 2011, 8(1): 763-809.
[70] ZENG Z, LIU J, SAVENIJE H H G. A simple approach to assess water scarcity integrating water quantity and quality[J/OL]. Ecological Indicators, 2013, 34: 441- 449.
[71] SMAKHTIN V, REVENGA C, DÖLL P. A pilot global assessment of environmental water requirements and scarcity[J]. Water International, 2004, 29(3): 307-317.
[72] HOEKSTRA A Y, MEKONNEN M M, CHAPAGAIN A K, et al. Global monthly water scarcity: Blue water footprints versus blue water availability[J/OL]. PLoS ONE, 2012, 7(2).
[73] LIU J, LIU Q, YANG H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality[J/OL]. Ecological Indicators, 2016, 60: 434-441.
[74] LIU J, YANG H, GOSLING S N, et al. Water scarcity assessments in the past, present, and future[J/OL]. Earth’s Future, 2017, 5(6): 545-559.
[75] PFISTER S, BAYER P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production[J]. Journal of Cleaner Production, 2014, 73: 52-62.
[76] LUTTER S, PFISTER S, GILJUM S, et al. Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis[J]. Global Environmental Change, 2016, 38: 171-182.
[77] 丁超, 胡永江, 王振华, 等. 虚拟水社会循环视域下的水资源承载力评价[J/OL]. 自然资源学报, 2021, 36(2): 356.
[78] 陈炜明. 全球贸易及其结构变化对各国经济和资源环境影响研究[D]. 中国地质大 学(北京), 2019.
[79] HAN X, ZHAO Y, GAO X, et al. Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures[J/OL]. Science of the Total Environment, 2021, 765: 144276.
[80] PFISTER S, BAYER P, KOEHLER A, et al. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use[J]. Environmental science & technology, 2011, 45(13): 5761-5768.
[81] RIDOUTT B G, PFISTER S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity[J/OL]. Global Environmental Change, 2010, 20(1): 113-120.
[82] OKI T, YANO S, HANASAKI N. Economic aspects of virtual water trade[J/OL]. Environmental Research Letters, 2017, 12(4).
[83] CARO D, ALESSANDRINI A, SPORCHIA F, et al. Global virtual water trade of avocado[J/OL]. Journal of Cleaner Production, 2021, 285: 124917.
[84] D’ODORICO P, CARR J, DALIN C, et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts[J/OL]. Environmental Research Letters, 2019, 14(5).
[85] BONFIGLIO A, CHELLI F. Assessing the behaviour of non-survey methods for constructing regional input--output tables through a Monte Carlo simulation[J]. Economic Systems Research, 2008, 20(3): 243-258.
[86] 张信信. 黑河流域实体水—虚拟水转化规律及其对水资源保护的启示[D]. 北京林 业大学, 2017.
[87] MILLER R E, BLAIR P D. Input-output analysis: foundations and extensions[M]. Cambridge university press, 2009.
[88] BOUDHAR A, BOUDHAR S, IBOURK A. An input--output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco[J]. Journal of Economic Structures, 2017, 6(1): 1-25.
[89] QADIR M, BOERS T M, SCHUBERT S, et al. Agricultural water management in water-starved countries: Challenges and opportunities[J/OL]. Agricultural Water Management, 2003, 62(3): 165-185.
[90] YANG H, ZEHNDER A. “Virtual water”: An unfolding concept in integrated water resources management[J/OL]. Water Resources Research, 2007, 43(12): 1-10.
[91] YANG H, WANG L, ZEHNDER A J B. Water scarcity and food trade in the Southern and Eastern Mediterranean countries[J/OL]. Food Policy, 2007, 32(5-6): 585-605.
[92] SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3245-3250.
[93] KUMMU M, WARD P J, DE MOEL H, et al. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia[J]. Environmental Research Letters, 2010, 5(3): 34006.
[94] OKI T, KANAE S. Global hydrological cycles and world water resources[J/OL]. Science, 2006, 313(5790): 1068-1072.
[95] LENZEN M, MORAN D, KANEMOTO K, et al. Building Eora: a Global Multi-Region Input-Output Database At High Country and Sector Resolution[J/OL]. Economic Systems Research, 2013, 25(1): 20-49.
[96] LENZEN M, KANEMOTO K, MORAN D, et al. Mapping the structure of the world economy[J/OL]. Environmental Science and Technology, 2012, 46(15): 8374-8381.
[97] TIMMER M P, DIETZENBACHER E, LOS B, et al. An illustrated user guide to the world input--output database: the case of global automotive production[J]. Review of International Economics, 2015, 23(3): 575-605.
[98] DIETZENBACHER E, LOS B, STEHRER R, et al. The construction of world input-- output tables in the WIOD project[J]. Economic Systems Research, 2013, 25(1): 71- 98.
[99] TUKKER A, DE KONING A, WOOD R, et al. EXIOPOL--development and illustrative analyses of a detailed global MR EE SUT/IOT[J]. Economic Systems Research, 2013, 25(1): 50-70.
[100]WOOD R, STADLER K, BULAVSKAYA T, et al. Global sustainability accounting— Developing EXIOBASE for multi-regional footprint analysis[J]. Sustainability, 2015, 7(1): 138-163.
[101]ANDREW R M, PETERS G P. A multi-region input--output table based on the global trade analysis project database (GTAP-MRIO)[J]. Economic Systems Research, 2013, 25(1): 99-121.
[102] PETERS G P, ANDREW R, LENNOX J. Constructing an environmentally- extended multi-regional input--output table using the GTAP database[J]. Economic Systems Research, 2011, 23(2): 131-152.
[103]TUKKER A, DIETZENBACHER E. Global Multiregional Input-Output Frameworks: an Introduction and Outlook[J/OL]. Economic Systems Research, 2013, 25(1): 1-19.
[104]HOEKSTRA A Y, MEKONNEN M M. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Volume 1 : Main Report[J/OL]. Value of Water Research Report Series No. 47, 2010, 1(16): 80.
[105] FAO. AQUASTAT Database[EB/OL]//In Food and Agriculture Organization of the United Nations. (2022). http://www.fao.org/nr/water/aquastat/main/index.stm.
[106]DAMKJAER S, TAYLOR R. The measurement of water scarcity: Defining a meaningful indicator[J]. Ambio, 2017, 46(5): 513-531.
[107]LIU C, KROEZE C, HOEKSTRA A Y, et al. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers[J/OL]. Ecological Indicators, 2012, 18: 42-49.
[108]WALLACE J S. Increasing agricultural water use efficiency to meet future food production[J]. Agriculture, ecosystems \& environment, 2000, 82(1-3): 105-119.
[109]GAUR M K, SQUIRES V R. Climate variability impacts on land use and livelihoods in drylands[M]. Springer, 2018.
[110]SINGH P K, CHUDASAMA H. Pathways for climate change adaptations in arid and semi-arid regions[J/OL]. Journal of Cleaner Production, 2021, 284: 124744.
[111]BATES B C, KUNDZEWICZ Z W, WU S, et al. 2008: Climate change and water[J]. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008, 210.
[112]IPCC. A S Y R. Climate change 2007: synthesis report[J]. Summary fo r Policymakers, 2007.
[113]MENDELSOHN R, DINAR A, DALFELT A. Climate change impacts on African agriculture[J]. Preliminary analysis prepared for the World Bank, Washington, District of Columbia, 2000, 25.
[114]GUPTA V, JAIN M K. Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario[J]. Journal of Hydrology, 2018, 567: 489-509.
[115]ZHAN S, SONG C, WANG J, et al. A global assessment of terrestrial evapotranspiration increase due to surface water area change[J]. Earth’s future, 2019, 7(3): 266-282.
[116]IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[M]//Core writing team. Ipcc Geneva, 2014: 1-151.
[117]GEBRU T A, BRHANE G K, GEBREMEDHIN Y G. Contributions of water harvesting technologies intervention in arid and semi-arid regions of Ethiopia, in ensuring households’ food security, Tigray in focus[J]. Journal of Arid Environments, 2021, 185: 104373.
[118]HE C, LIU Z, WU J, et al. Future global urban water scarcity and potential solutions[J]. Nature Communications, 2021, 12(1): 1-11.
[119]PETERS G P, MINX J C, WEBER C L, et al. Growth in emission transfers via international trade from 1990 to 2008[J]. Proceedings of the national academy of sciences, 2011, 108(21): 8903-8908.
[120]MENG J, MI Z, GUAN D, et al. The rise of South-South trade and its effect on global CO2 emissions[J]. Nature communications, 2018, 9(1): 1-7.
[121]ZHAO D, LIU J, YANG H, et al. Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China[J/OL]. Resources, Conservation and Recycling, 2021, 175: 105834.
[122]MCDONALD R I, DOUGLAS I, REVENGA C, et al. Global urban growth and the geography of water availability, quality, and delivery[J]. Ambio, 2011, 40(5): 437- 446.
[123]MCDONALD R I, WEBER K, PADOWSKI J, et al. Water on an urban planet:Urbanization and the reach of urban water infrastructure[J]. Global environmental change, 2014, 27: 96-105.
[124]MCDONALD R I, GREEN P, BALK D, et al. Urban growth, climate change, and freshwater availability[J]. Proceedings of the National Academy of Sciences, 2011, 108(15): 6312-6317.
[125]WADA Y, GLEESON T, ESNAULT L. Wedge approach to water stress[J]. Nature Geoscience, 2014, 7(9): 615-617.
[126]UNITED NATIONS. Transforming Our World: The 2030 Agenda for Sustainable Development[R]. United Nations General Assembly, New York, 2015.
[127]HOEKSTRA A Y. A critique on the water-scarcity weighted water footprint in LCA[J]. Ecological indicators, 2016, 66: 564-573.
[128]UNITED NATIONS ENVIRONMENT PROGRAMME. Food Waste Index Report 2021[R]//Unep. Nairobi, 2021.
[129]LENZEN M, WOOD R, WIEDMANN T. Uncertainty analysis for multi-region input- -output models--a case study of the UK’s carbon footprint[J]. Economic Systems Research, 2010, 22(1): 43-63.

所在学位评定分委会
环境科学与工程学院 ; 力学与航空航天工程系
国内图书分类号
F746/X24/ TV213.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335859
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
钟锐. 全球虚拟水流动对国家水资源短缺的影响研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930600-钟锐-环境科学与工程学(7484KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[钟锐]的文章
百度学术
百度学术中相似的文章
[钟锐]的文章
必应学术
必应学术中相似的文章
[钟锐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。