中文版 | English
题名

离-电型柔性触觉传感器的软材料分级微结构构筑及应用研究

其他题名
GRADED MICROSTRUCTURES CONSTRUCTION OF SOFT MATERIALS AND APPLICATION OF IONTRONIC FLEXIBLE TACTILE SENSORS
姓名
姓名拼音
BAI Ningning
学号
11849536
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
郭传飞
导师单位
材料科学与工程系
论文答辩日期
2022-05-18
论文提交日期
2022-06-16
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  柔性触觉传感器是一类将外界机械刺激转化为电信号的柔性器件。通过材料和结构的设计,可赋予触觉传感器良好的柔性,实现在可穿戴设备、电子皮肤及智能机器人等领域的重要应用。同时,日益多样化的应用场景要求柔性触觉传感器具有高灵敏度、宽检测范围、可线性传感能力以及更多元的传感模式。离-电型柔性触觉传感器因结构简单、信噪比高、功耗低、抗干扰能力强等优点得到广泛研究。

  引入微结构如金字塔、微锥、半球等是提升柔性触觉传感器灵敏度的通用方法。但由于制备柔性触觉传感器的软材料是不可压缩的即压缩过程中保持体积不变,受压时发生结构硬化并表现出对外界压力高抵抗性,使传感器的灵敏度随着压力的增加而显著下降、响应呈现显著的非线性。针对这一问题,本研究从材料的结构出发,通过界面结构的设计来解决软材料受压产生结构硬化的本征性问题。设计并制作一类分级微结构,有效提高结构的可压缩性和变形性,实现了柔性触觉传感器的灵敏度、传感范围、响应线性度及微结构检测能力等方面的性能提升。主要研究内容和结果如下:

  提出一种分级自填充结构,可有效提高传感界面的可压缩性,解决了柔性触觉传感器中软材料的结构硬化这一问题,结合离-电型传感机制,实现柔性触觉传感器的宽量程(0.08 Pa – 360 kPa)和高灵敏度(~ 3300 kPa-1)的统一;同时,将高压区灵敏度提升四个数量级,并获得超高的高压压力分辨率(0.0056%)。分级自填充型传感器在航空压力测试、机器人触觉等领域具有潜在的应用前景。

  在实现传感器高灵敏度、宽量程的基础上进一步设计一种分级互锁结构,解决了由结构硬化问题导致触觉传感器呈非线性响应的问题,有效拓宽传感器的线性传感范围。在理论方面,系统阐述了器件线性传感机制,并定义SP = S·ΔP为线性传感因子,用以评价触觉器件的线性传感能力,拓展触觉器件的性能评价指标。在性能方面,分级互锁结构的引入使界面接触面积随着压力线性增长,实现触觉器件的高灵敏度(~ 49 kPa-1)、高线性度、宽线性传感范围(4 – 485 kPa)。在应用方面,将具有分级互锁微结构的柔性触觉传感器集成在机械手上,结合机器学习,实现机械手对物体的重量的识别,提升机器人触觉感知能力。

   在高灵敏度及宽线性传感范围的基础之上,进一步发展具有结构识别能力的触觉器件研究。通过对皮肤触觉的研究,提出压觉-滑动觉的双模态触觉感知模式。将仿生指纹结构与微结构化的离-电界面结合,实现双模态触觉器件高灵敏(~ 500 kPa-1)、宽传感范围(~ 350 kPa)以及极短的响应/弛豫时间(~ 3 ms)等优异的压力传感性能,以及低结构检测限(lmin  = 15 μmhmin = 6 μm)、高耐摩擦性等良好的滑动觉方面的性能。系统阐述了双模态器件的纹理(结构)识别机制,为触觉器件在外物识别方面的发展提供理论支持。在应用方面,将双双模态触觉传感器集成在机械手表面进行精细结构识别,帮助机器人识别20种织物,其准确率高达95%及以上,实现高于人的识别准确度。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Iannacci J. Internet of Things (IoT); Internet of Everything (IoE); Tactile Internet; 5G-A (Not So Evanescent) Unifying Vision Empowered by EH-MEMS (Energy Harvesting MEMS) and RF-MEMS (Radio Frequency Mems) [J]. Sensors and Actuators A: Physical, 2018, 272, 187-198.
[2] Oteafy S.M.A., Hassanein H.S. Leveraging Tactile Internet Cognizance and Operation Via Iot and Edge Technologies [J]. Proceedings of the IEEE, 2019, 107(2): 364-375.
[3] Fulkerson M. The First Sense: A Philosophical Study of Human Touch [M]. London, UK: MIT Press, 2014.
[4] Wang C., Xia K., Wang H., et al. Advanced Carbon for Flexible and Wearable Electronics [J]. Advanced Materials, 2019, 31(9): 1801072.
[5] Palaniappan V., Masihi S., Panahi M., et al. Laser-Assisted Fabrication of a Highly Sensitive and Flexible Micro Pyramid-structured Pressure Sensor for E-skin Applications [J]. IEEE Sensors Journal, 2020, 20(14): 7605-7613.
[6] Cao Y., Figueroa J., Li W., et al. Understanding the Dynamic Response in Ferroelectret Nanogenerators to Enable Self-Powered Tactile Systems and Human-controlled Micro-robots [J]. Nano Energy, 2019, 63, 103852.
[7] Jeong Y., Park J., Lee J., et al. Ultrathin, Biocompatible, and Flexible Pressure Sensor with a Wide Pressure Range and Its Biomedical Application [J]. ACS Sensors, 2020, 5(2): 481-489.
[8] Meng K., Chen J., Li X., et al. Flexible Weaving Constructed Self-Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure [J]. Advanced Functional Materials, 2019, 29(5): 1806388.
[9] Ye C., Jingjing Z., Hainan Z., et al. State-of-the-Art and Recent Developments in Micro/Nanoscale Pressure Sensors for Smart Wearable Devices and Health Monitoring Systems [J]. Nanotechnology and Precision Engineering, 2020, 3(1): 43-52.
[10] Elsayes A., Sharma V., Yiannacou K., et al. Plant-Based Biodegradable Capacitive Tactile Pressure Sensor Using Flexible and Transparent Leaf Skeletons as Electrodes and Flower Petal as Dielectric Layer [J]. Advanced Sustainable Systems, 2020, 4(9): 2000056.
[11] Kou H., Zhang L., Tan Q., et al. Wireless Wide-Range Pressure Sensor Based on Graphene/ PDMS Sponge for Tactile Monitoring [J]. Scientific Reports, 2019, 9(1): 3916-3916.
[12] Luan Y., Zhang S., Nguyen T.H., et al. Polyurethane Sponges Decorated with Reduced Graphene Oxide and Silver Nanowires for Highly Stretchable Gas Sensors [J]. Sensors and Actuators B: Chemical, 2018, 265, 609-616.
[13] Yang J., Liu Q., Deng Z., et al. Ionic Liquid-Activated Wearable Electronics [J]. Materials Today Physics, 2019, 8, 78-85.
[14] Sundaram S., Kellnhofer P., Li Y., et al. Learning the Signatures of the Human Grasp Using a Scalable Tactile Glove [J]. Nature, 2019, 569(7758): 698-702.
[15] Yu X., Xie Z., Yu Y., et al. Skin-Integrated Wireless Haptic Interfaces for Virtual and Augmented Reality [J]. Nature, 2019, 575(7783): 473-479.
[16] Wang S., Xu J., Wang W., et al. Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array [J]. Nature, 2018, 555(7694): 83-88.
[17] Koo J.H., Jeong S., Shim H.J., et al. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes [J]. ACS Nano, 2017, 11(10): 10032-10041.
[18] Kim H.J., Sim K., Thukral A., et al. Rubbery Electronics and Sensors from Intrinsically Stretchable Elastomeric Composites of Semiconductors and Conductors [J]. Science Advances, 2017, 3(9): 1701114.
[19] Núñez C.G., Navaraj W.T., Polat E.O., et al. Energy-Autonomous, Flexible, and Transparent Tactile Skin [J]. Advanced Functional Materials, 2017, 27(18): 1606287.
[20] Boutry C.M., Negre M., Jorda M., et al. A Hierarchically Patterned, Bioinspired E-skin Able to Detect the Direction of Applied Pressure for Robotics [J]. Science Robotics, 2018, 3(24): eaau6914.
[21] Ramalingame R., Lakshmanan A., Müller F., et al. Highly Sensitive Capacitive Pressure Sensors for Robotic Applications Based on Carbon Nanotubes and Pdms Polymer Nanocomposite [J]. Journal of Sensors and Sensor Systems, 2019, 8(1): 87-94.
[22] Wan Y., Wang Y., Guo C.F. Recent Progresses on Flexible Tactile Sensors [J]. Materials Today Physics, 2017, 1, 61-73.
[23] Huang Y., Fan X., Chen S.C., et al. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing [J]. Advanced Functional Materials, 2019, 29(12): 1808509.
[24] Bao Z., Mannsfeld S.C.B., Tee B.C.K., et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers [J]. Nature Materials, 2010, 9(10): 859-864.
[25] Graz I., Kaltenbrunner M., Keplinger C., et al. Flexible Ferroelectret Field-Effect Transistor for Large-Area Sensor Skins and Microphones [J]. Applied Physics Letters, 2006, 89(7): 1-3.
[26] Huang Y., Chen Y., Fan X., et al. Wood Derived Composites for High Sensitivity and Wide Linear-Range Pressure Sensing [J]. Small, 2018, 14(31): 1801520.
[27] Mu J., Hou C., Wang G., et al. An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors [J]. Advanced Materials, 2016, 28(43): 9491-9497.
[28] Wang J., Jiu J., Nogi M., et al. A Highly Sensitive and Flexible Pressure Sensor with Electrodes and Elastomeric Interlayer Containing Silver Nanowires [J]. Nanoscale, 2015, 7(7): 2926-2932.
[29] Duan J., Liang X., Guo J., et al. Ultra-stretchable and Force-Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks [J]. Advanced Materials, 2016, 28(36): 8037-8044.
[30] Wang Q., Jian M., Wang C., et al. Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin [J]. Advanced Functional Materials, 2017, 27(9): 1605657.
[31] Cao M., Wang M., Li L., et al. Wearable RGO-AgNW@Cotton Fiber Piezoresistive Sensor Based on the Fast Charge Transport Channel Provided by Ag Nanowire [J]. Nano Energy, 2018, 50, 528-535.
[32] Chen H., Su Z., Song Y., et al. Omnidirectional Bending and Pressure Sensor Based on Stretchable Cnt-Pu Sponge [J]. Advanced Functional Materials, 2017, 27(3): 1604434.
[33] Chen Z., Ming T., Goulamaly M.M., et al. Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays [J]. Advanced Functional Materials, 2016, 26(28): 5061-5067.
[34] Gong S., Schwalb W., Wang Y., et al. A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires [J]. Nature Communications, 2014, 5(1): 3132-3132.
[35] Lee S., Shin S., Lee S., et al. Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics [J]. Advanced Functional Materials, 2015, 25(21): 3114-3121.
[36] Pan L., Chortos A., Yu G., et al. An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film [J]. Nature Communications, 2014, 5(1): 1-8.
[37] Ge G., Cai Y., Dong Q., et al. A Flexible Pressure Sensor Based on RGO/Polyaniline Wrapped Sponge with Tunable Sensitivity for Human Motion Detection [J]. Nanoscale, 2018, 10(21): 10033-10040.
[38] Yang C., Li L., Zhao J., et al. Highly Sensitive Wearable Pressure Sensors Based on Three-Scale Nested Wrinkling Microstructures of Polypyrrole Films [J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25811-25818.
[39] Lee D., Lee H., Jeong Y., et al. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles [J]. Advanced Materials, 2016, 28(42): 9364-9369.
[40] Luo N., Huang Y., Liu J., et al. Hollow-structured Graphene-Silicon-Composite-Based Piezoresistive Sensors: Decoupled Property Tuning and Bending Reliability [J]. Advanced Materials, 2017, 29(40): 1702675.
[41] Park J., Lee Y., Hong J., et al. Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins [J]. ACS Nano, 2014, 8(5): 4689-4697.
[42] Shi J., Wang L., Dai Z., et al. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range [J]. Small, 2018, 14(27): 1800819.
[43] Jian M., Xia K., Wang Q., et al. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures [J]. Advanced Functional Materials, 2017, 27(9): 1606066.
[44] Park J., Kim J., Hong J., et al. Tailoring Force Sensitivity and Selectivity by Microstructure Engineering of Multidirectional Electronic Skins [J]. NPG Asia Materials, 2018, 10(4): 163-176.
[45] Bae G.Y., Pak S.W., Kim D., et al. Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array [J]. Advanced Materials, 2016, 28(26): 5300-5306.
[46] Park H., Jeong Y.R., Yun J., et al. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars [J]. ACS Nano, 2015, 9(10): 9974-9985.
[47] Gardner S.D., Haider M.R., Islam M.T., et al. Aluminum-Doped Zinc Oxide (ZnO) Inkjet-Printed Piezoelectric Array for Pressure Gradient Mapping [M]. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems. 2019: 1101-1104.
[48] Chen Z., Wang Z., Li X., et al. Flexible Piezoelectric-induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures [J]. ACS Nano, 2017, 11(5): 4507-4513.
[49] Lee J.S., Shin K.-Y., Cheong O.J., et al. Highly Sensitive and Multifunctional Tactile Sensor Using Free-Standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring [J]. Scientific Reports, 2015, 5(1): 1-8.
[50] Park S.-H., Lee H.B., Yeon S.M., et al. Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates [J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24773-24781.
[51] Liu Q., Wang X. X., Song W.-Z., et al. Wireless Single-Electrode Self-Powered Piezoelectric Sensor for Monitoring [J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8288-8295.
[52] Deng W., Yang T., Jin L., et al. Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor Towards Remote Control of Gestures [J]. Nano Energy, 2019, 55, 516-525.
[53] Shao H., Wang H., Cao Y., et al. High-Performance Voice Recognition Based on Piezoelectric Polyacrylonitrile Nanofibers [J]. Advanced Electronic Materials, 2021, 7(6): 2100206.
[54] Huang X., Qin Q., Wang X., et al. Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing [J]. ACS Nano, 2021, 15(12): 19783-19792.
[55] Yu X., Wang H., Ning X., et al. Needle-Shaped Ultrathin Piezoelectric Microsystem for Guided Tissue Targeting Via Mechanical Sensing [J]. Nature Biomedical Engineering, 2018, 2(3): 165-172.
[56] Park D.Y., Joe D.J., Kim D.H., et al. Self‐Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors [J]. Advanced Materials, 2017, 29(37): 1702308.
[57] Wang Z.L., Wang A.C. On the Origin of Contact-Electrification [J]. Materials Today, 2019, 30, 34-51.
[58] Zou H., Guo L., Xue H., et al. Quantifying and Understanding the Triboelectric Series of Inorganic Non-Metallic Materials [J]. Nature Communications, 2020, 11(1): 1-7.
[59] Fan F.-R., Tian Z.Q., Wang Z.L. Flexible Triboelectric Generator [J]. Nano Energy, 2012, 1(2): 328-334.
[60] Yao G., Xu L., Cheng X., et al. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing [J]. Advanced Functional Materials, 2020, 30(6): 1907312.
[61] Cai Y., Zhang X., Wang G., et al. A Flexible Ultra-Sensitive Triboelectric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin [J]. Nano Energy, 2021, 81, 105663.
[62] Wang X., Zhang H., Dong L., et al. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping [J]. Advanced Materials, 2016, 28(15): 2896-2903.
[63] Sun H., Zhao Y., Wang C., et al. Ultra-stretchable, Durable and Conductive Hydrogel with Hybrid Double Network as High Performance Strain Sensor and Stretchable Triboelectric Nanogenerator [J]. Nano Energy, 2020, 76, 105035-105047.
[64] Chun S., Son W., Kim H., et al. Self-Powered Pressure-and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin [J]. Nano Letters, 2019, 19(5): 3305-3312.
[65] Wang X., Dong L., Zhang H., et al. Recent Progress in Electronic Skin [J]. Advanced Science, 2015, 2(10): 1500169.
[66] Nie B., Li R., Cao J., et al. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing [J]. Advanced Materials, 2015, 27(39): 6055-6062.
[67] Wan Y., Qiu Z., Hong Y., et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures [J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[68] Li W., Xiong L., Pu Y., et al. High-Performance Paper-Bsed Capacitive Flexible Pressure Sensor and Its Application in Human-Related Measurement [J]. Nanoscale Rsearch Letters, 2019, 14(1): 1-7.
[69] Wang J., Lou Y., Wang B., et al. Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer [J]. Sensors, 2020, 20(9): 2459-2472.
[70] Xiong Y., Shen Y., Tian L., et al. A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring [J]. Nano Energy, 2020, 70, 104436-104447.
[71] Bilent S., Dinh T.H.N., Martincic E., et al. Influence of the Porosity of Polymer Foams on the Performances of Capacitive Flexible Pressure Sensors [J]. Sensors, 2019, 19(9): 1968-1980.
[72] Luo Y., Shao J., Chen S., et al. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays [J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17796-17803.
[73] Guo Z., Mo L., Ding Y., et al. Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes Based Composite Dielectric Layer [J]. Micromachines, 2019, 10(11): 715-727.
[74] Wu J., Yao Y., Zhang Y., et al. Rational Design of Flexible Capacitive Sensors with Highly Linear Response over a Broad Pressure Sensing Range [J]. Nanoscale, 2020, 12(41): 21198-21206.
[75] Choi H.B., Oh J., Kim Y., et al. Transparent Pressure Sensor with High Linearity over a Wide Pressure Range for 3D Touch Screen Applications [J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16691-16699.
[76] Jang S., Jee E., Choi D., et al. Ultrasensitive, Low-Power Oxide Transistor-Based Mechanotransducer with Microstructured, Deformable Ionic Dielectrics [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31472-31479.
[77] Chhetry A., Yoon H., Park J.Y. A Flexible and Highly Sensitive Capacitive Pressure Sensor Based on Conductive Fibers with a Microporous Dielectric for Wearable Electronics [J]. Journal of Materials Chemistry C, 2017, 5(38): 10068-10076.
[78] Yoo D., Won D.J., Cho W., et al. Double Side Electromagnetic Interference-Shielded Bending-Insensitive Capacitive-type Flexible Touch Sensor with Linear Response over a Wide Detection Range [J]. Advanced Materials Technologies, 2021, 6(11): 2100358.
[79] Li T., Luo H., Qin L., et al. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer [J]. Small, 2016, 12(36): 5042-5048.
[80] Yang J.C., Kim J.O., Oh J., et al. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19472-19480.
[81] Nie B., Xing S., Brandt J.D., et al. Droplet-Based Interfacial Capacitive Sensing [J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[82] Chortos A., Liu J., Bao Z. Pursuing Prosthetic Electronic Skin [J]. Nature Materials, 2016, 15(9): 937-950.
[83] Tai G., Wei D., Su M., et al. Force-Sensitive Interface Engineering in Flexible Pressure Sensors: A Review [J]. Sensors, 2022, 22(7): 1-31.
[84] Amoli V., Kim J., Kim S.Y., et al. Ionic Tactile Sensors for Emerging Human-Interactive Technologies: A Review of Recent Progress [J]. Advanced Functional Materials, 2020, 30(20): 1904532.
[85] Suo L., Borodin O., Gao T., et al. “Water-in-Salt” Electrolyteenables High-Voltage Aqueous Lithium-Ion Chemistries [J]. Science, 2015, 350(6263): 938-943.
[86] Li R., Nie B., Zhai C., et al. Telemedical Wearable Sensing Platform for Management of Chronic Venous Disorder [J]. Annals of Biomedical Engineering, 2016, 44(7): 2282-2291.
[87] Zhang Z., Zhu Z., Bazor B., et al. Feetbeat: A Flexible Iontronic Sensing Wearable Detects Pedal Pulses and Muscular Activities [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3072-3079.
[88] Zhang Y., Sezen S., Ahmadi M., et al. Paper-Based Supercapacitive Mechanical Sensors [J]. Scientific Reports, 2018, 8(1): 16284-16294.
[89] Cho S.H., Lee S.W., Yu S., et al. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity [J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10128-10135.
[90] Qiu Z., Wan Y., Zhou W., et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf [J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[91] Choi D., Jang S., Kim J.S., et al. Multifunctional Tactile Sensors: A Highly Sensitive Tactile Sensor Using a Pyramid-Plug Structure for Detecting Pressure, Shear Force, and Torsion [J]. Advanced Materials Technologies, 2019, 4(3): 1970019.
[92] Jin M.L., Park S., Lee Y., et al. An Ultrasensitive, Visco-Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells [J]. Advanced Materials, 2017, 29(13): 1605973.
[93] Reza M.S., Ayag K.R., Yoo M.K., et al. Electrospun Spandex Nanofiber Webs with Ionic Liquid for Highly Sensitive, Low Hysteresis Piezocapacitive Sensor [J]. Fibers and Polymers, 2019, 20(2): 337-347.
[94] Li S., Pan N., Zhu Z., et al. All-in-One Iontronic Sensing Paper [J]. Advanced Functional Materials, 2019, 29(11): 1807343.
[95] Li S., Chu J., Li B., et al. Handwriting Iontronic Pressure Sensing Origami [J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46157-46164.
[96] Yang X., Wang Y., Sun H., et al. A Flexible Ionic Liquid-Polyurethane Sponge Capacitive Pressure Sensor [J]. Sensors and Actuators A: Physical, 2019, 285, 67-72.
[97] Zhong C., Deng Y., Hu W., et al. A Review of Electrolyte Materials And Compositions for Electrochemical Supercapacitors [J]. Chemical Society Reviews, 2015, 44, 7484-7539.
[98] Wang Z., Si Y., Zhao C., et al. Flexible and Washable Poly(Ionic Liquid) Nanofibrous Membrane with Moisture Proof Pressure Sensing for Real-Life Wearable Electronics [J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27200-27209.
[99] Wan Y., Qiu Z., Huang J., et al. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin [J]. Small, 2018, 14(35): 1801657.
[100] Zhu P., Du H., Hou X., et al. Skin-Electrode Iontronic Interface for Mechanosensing [J]. Nature Communications, 2021, 12(1): 4731-4731.
[101] Mannsfeld S.C.B., Tee B.C.K., Stoltenberg R.M., et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers [J]. Nature Materials, 2010, 9(10): 859-864.
[102] Chhetry A., Kim J., Yoon H., et al. Ultrasensitive Interfacial Capacitive Pressure Sensor Based on a Randomly Distributed Microstructured Iontronic Film for Wearable Applications [J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3438-3449.
[103] Li R., Si Y., Zhu Z., et al. Supercapacitive Iontronic Nanofabric Sensing [J]. Advanced Materials, 2017, 29(36): 1700253.
[104] Lu P., Wang L., Zhu P., et al. Iontronic Pressure Sensor with High Sensitivity and Linear Response over a Wide Pressure Range Based on Soft Micropillared Electrodes [J]. Science Bulletin, 2021, 11(66): 1091-1100.
[105] Xiao Y., Duan Y., Li N., et al. Multilayer Double-Sided Microstructured Flexible Iontronic Pressure Sensor with a Record-Wide Linear Working Range [J]. ACS Sensors, 2021, 6(5): 1785-1795.
[106] Tai Y., Mulle M., Aguilar Ventura I., et al. A Highly Sensitive, Low-Cost, Wearable Pressure Sensor Based on Conductive Hydrogel Spheres [J]. Nanoscale, 2015, 7(35): 14766-14773.
[107] Archard B. L. Elastic Deformation and the Laws of Friction [J]. Nature, 1953, 172(4369): 169-170.
[108]摩尔.摩擦学原理和应用[M].北京:机械工业出版社, 1982.
[109]Greenwood J A W.J.B.P. Contact of Nominally Flat Surfaces [J]. Mathematical and Physical Sciences, Series A, 1996, 294(1442): 21-26.
[110] Lee J., Kwon H., Seo J., et al. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics [J]. Advanced Materials, 2015, 27(15): 2433-2439.
[111] Boutry C.M., Nguyen A., Lawal Q.O., et al. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring [J]. Advanced Materials, 2015, 27(43): 6954-6961.
[112] Fortunato M., Bellagamba I., Tamburrano A., et al. Flexible Ecoflex/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors [J]. Sensors, 2020, 20(16): 1-19.
[113] Yoo J.Y., Seo M.H., Lee J.S., et al. Touch Sensors: Industrial Grade, Bending-Insensitive, Transparent Nanoforce Touch Sensor Via Enhanced Percolation Effect in a Hierarchical Nanocomposite Film [J]. Advanced Functional Materials, 2018, 28(42): 1870305.
[114] Liu W., Yan C. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors [J]. Sensors, 2018, 18(4): 1001-1010.
[115] Persson B.N.J. Contact Mechanics for Randomly Rough Surfaces [J]. Surface Science Reports, 2006, 61(4): 201-227.
[116] Zeng X., Wang Z., Zhang H., et al. Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins [J]. ACS Applied Materials & Interfaces, 2019, 11(23): 21218-21226.
[117] Yang J., Luo S., Zhou X., et al. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes [J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[118] Chortos A., Bao Z. Skin-Inspired Electronic Devices [J]. Materials Today, 2014, 17(7): 321-331.
[119] Pang X.D., Tan H.Z., Durlach N.I. Manual Discrimination of Force Using Active Finger Motion [J]. Perception & Psychophysics, 1991, 49(6): 531-540.
[120] Wang X., Liu Z., Zhang T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring [J]. Small, 2017, 13(25): 1602790.
[121] Song Z., Li W., Bao Y., et al. Bioinspired Microstructured Pressure Sensor Based on a Janus Graphene Film for Monitoring Vital Signs and Cardiovascular Assessment [J]. Advanced Electronic Materials, 2018, 4(11): 1800252.
[122] Yang J.C., Mun J., Kwon S.Y., et al. Electronic Skin: Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics [J]. Advanced Materials 2019, 31(48): 1970337.
[123] Gu G., Zhang N., Xu H., et al. A Soft Neuroprosthetic Hand Providing Simultaneous Myoelectric Control and Tactile Feedback [J]. Nature Biomedical Engineering, 2021, 1-10.
[124] Yin R., Wang D., Zhao S., et al. Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application [J]. Advanced Functional Materials, 2021, 31(11): 2008936.
[125] Bai N., Wang L., Wang Q., et al. Graded Intrafillable Architecture-Based Iontronic Pressure Sensor with Ultra-Broad-Range High Sensitivity [J]. Nature Communications, 2020, 11(1): 1-9.
[126] Ma L., Yu X., Yang Y., et al. Highly Sensitive Flexible Capacitive Pressure Sensor with a Broad Linear Response Range and Finite Element Analysis of Micro-Array Electrode [J]. Journal of Materiomics, 2020, 6(2): 321-329.
[127] Shao R., Wang C., Wang G., et al. A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback [J]. Advanced Materials Technologies, 2020, 5(4): 1900864.
[128] Xiong W., Guo D., Yang Z., et al. Conformable, Programmable and Step-Linear Sensor Array for Large-Range Wind Pressure Measurement on Curved Surface [J]. Science ChinaTechnological Sciences, 2020, 63(10): 2073-2081.
[129] Qin H., Owyeung R.E., Sonkusale S.R., et al. Highly Stretchable and Nonvolatile Gelatin-Supported Deep Eutectic Solvent Gel Electrolyte-Based Ionic Skins for Strain and Pressure Sensing [J]. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(3): 601-608.
[130] Ji B., Zhou Q., Lei M., et al. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range [J]. Small, 2021, 17(43): 2103312.
[131] Zheng Y., Lin T., Zhao N., et al. Highly Sensitive Electronic Skin with a Linear Response Based on the Strategy of Controlling the Contact Area [J]. Nano Energy, 2021, 85, 106013.
[132] Lee Y., Park J., Cho S., et al. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range [J]. ACS Nano, 2018, 12(4): 4045-4054.
[133] Chen S.H., Jakeman A.J., Norton J.P. Artificial Intelligence Techniques: An Introduction to Their Use for Modelling Environmental Systems [J]. Mathematics and computers in simulation, 2008, 78(2): 379-400.
[134] Janiesch C., Zschech P., Heinrich K. Machine Learning and Deep Learning [J]. Electron Markets, 2021, 31(3): 685-695.
[135] Jordan M.I., Mitchell T.M. Machine Learning: Trends, Perspectives, and Prospects [J]. Science, 2015, 349(6245): 255-260.
[136] Goodfellow I. Deep Learning [M]. Cambridge, Massachusetts: The MIT Press, 2016.
[137] Jiao Y., Du P. Performance Measures in Evaluating Machine Learning Based Bioinformatics Predictors for Classifications [J]. Quantitative Biology, 2016, 4(4): 320-330.
[138] Dahiya R.S., Metta G., Valle M., et al. Tactile Sensing from Humans to Humanoids [J]. IEEE Transactions on Robotics, 2010, 26(1): 1-20.
[139] Scheibert J., Leurent S., Prevost A., et al. The Role of Fingerprints in the Coding of Tactile Information Probed with a Biomimetic Sensor [J]. Science, 2009, 323(5920): 1503-1506.
[140] Fagiani R., Massi F., Chatelet E., et al. Tactile Perception by Friction Induced Vibrations [J]. Tribology International, 2011, 44(10): 1100-1110.
[141]Wandersman E., Candelier R., Debrégeas G., et al. Texture-Induced Modulations of Friction Force: The Fingerprint Effect [J]. Physical Review Letters, 2011, 107(16): 164301-164301.
[142] Choi E., Sul O., Lee J., et al. Biomimetic Tactile Sensors with Bilayer Fingerprint Ridges Demonstrating Texture Recognition [J]. Micromachines, 2019, 10(10): 642-656.
[143] Xu G., Wu H.Z., Shi Y.Q. Structural Design of Convolutional Neural Networks for Steganalysis [J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TP212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335864
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
白宁宁. 离-电型柔性触觉传感器的软材料分级微结构构筑及应用研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849536-白宁宁-材料科学与工程(27669KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[白宁宁]的文章
百度学术
百度学术中相似的文章
[白宁宁]的文章
必应学术
必应学术中相似的文章
[白宁宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。