[1] GURGUL M. Industrial robots and cobots: Everything you need to know about your future co-worker[M]. Michał Gurgul, 2018.
[2] AZHDARI A, CHALHOUB N, GORDANINEJAD F. Dynamic modeling of a revolute-prismatic flexible robot arm fabricated from advanced composite materials[J]. Nonlinear Dynamics, 1991, 2(3): 171-186.
[3] KIM K S, KWAK Y K, et al. Manufacturing of a SCARA type direct-drive robot with graphite fiber epoxy composite material[J]. Robotica, 1991, 9(2): 219-229.
[4] GHAZAVI A, GORDANINEJAD F, CHALHOUB N. Dynamic analysis of a composite-material flexible robot arm[J]. Computers & structures, 1993, 49(2): 315-327.
[5] JEONG K S, KIM K S, KWAK Y K, et al. Development of the anthropomorphic robot with carbon fiber epoxy composite materials[J]. Composite Structures, 1993, 25(1-4): 313-324.
[6] KIM Y G, JEONG K S, LEE J W, et al. Development of the composite third robot arm of the six-axis articulated robot manipulator[J]. Composite structures, 1996, 35(4): 331-342.
[7] LEE C S, OH J H, KIM H S, et al. Composite wrist blocks for double arm type robots for handling large LCD glass panels[J]. Composite structures, 2002, 57(1-4): 345-355.
[8] LEE C S, et al. Manufacturing of composite sandwich robot structures using the co-cure bonding method[J]. Composite Structures, 2004, 65(3-4): 307-318.
[9] WILLIS D, NOKLEBY S, POP-ILIEV R. Development of a Composite-Based Long Reach Robotic Arm[C]//Symposium of CCToMM, M3, Mechanisms, Machines, and Mechatronics,Québec, Canada. 2009: 1-10.
[10] YOO S Y, JUN B H, SHIM H, et al. Design and analysis of carbon fiber reinforced plastic body frame for multi-legged subsea walking robot, Crabster[J]. Ocean engineering, 2015, 102:78-86.
[11] SHIM H, YOO S Y, KANG H, et al. Development of arm and leg for seabed walking robotCRABSTER200[J]. Ocean Engineering, 2016, 116: 55-67.
[12] KARTIKEJAN P, SABARIANAND D, SUGANTAN S. Investigation on adaptability of carbon fiber tube for serial manipulator[J]. FME Transactions, 2019, 47(3): 412-417.
[13] 陈丰. 碳纤维复合材料机械臂设计[J]. 郑州工学院学报, 1992, 13(4): 95-99.
[14] 田龙飞. 工业机器人用碳纤维复合材料上臂的设计[D]. 中国科学院大学, 2014.
[15] 杨峰. 基于碳纤维与铝合金的轻型机械臂混合结构设计方法研究[D]. 武汉理工大学,2018.
[16] 隋显航, 郭辉, 李显华, 等. 碳纤维增强环氧复合材料机械臂结构设计与性能研究[J]. 化工新型材料, 2020, 48(7): 4.
[17] 陆汉林, 胡利永, 孙宝寿, 等. 基于碳纤维复合材料的机器人臂杆优化设计[J]. 机械制造,2021, 59(11): 6.
[18] SHEPHERD S, BUCHSTAB A. Kuka robots on-site[M]//Robotic Fabrication in Architecture, Art and Design 2014. Springer, 2014: 373-380.
[19] OTT C, ROA M A, SCHMIDT F, et al. Mechanisms and design of DLR humanoid robots[J].Humanoid Robotics: A Reference, 2016: 1-26.
[20] KEBRIA P M, AL-WAIS S, ABDI H, et al. Kinematic and dynamic modelling of UR5 manipulator[C]//2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE,2016: 004229-004234.
[21] KO S, CHOI J E, LEE C W, et al. Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber[J]. Journal of industrial and engineering chemistry, 2017, 54: 252-261.
[22] WINDHORST T, BLOUNT G. Carbon-carbon composites: a summary of recent developments and applications[J]. Materials & Design, 1997, 18(1): 11-15.
[23] MUTASHER S, SAHARI B, HAMOUDA A, et al. Experimental study of bending fatigue characteristics of a hybrid aluminum/composite drive shaft[J]. Journal of composite materials,2007, 41(18): 2267-2288.
[24] FENG P, HU L, QIAN P, et al. Compressive bearing capacity of CFRP–aluminum alloy hybrid tubes[J]. Composite Structures, 2016, 140: 749-757.
[25] DENAVIT J, HARTENBERG R S. Closure to ”Discussions of ’A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices’” (1956, ASME J. Appl. Mech., 23, pp. 151–153)[J]. Journal of Applied Mechanics, 1956, 23(1): 153.
[26] SELIG J M. Geometrical methods in robotics.[M]. Springer New York, 1996.
[27] HARB S, BURDEKIN M. A systematic approach to identify the error motion of an N-degree of freedom manipulator[J]. The International Journal of Advanced Manufacturing Technology,1994, 9(2): 126-133.
[28] ZHENHUA W, HUI X, GUODONG C, et al. A distance error based industrial robot kinematic calibration method[J]. Industrial Robot: An International Journal, 2014.
[29] OKAMURA K, PARK F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4): 415-421.
[30] HE R, ZHAO Y, YANG S, et al. Kinematic-parameter identification for serial-robot calibration based on POE formula[J]. IEEE Transactions on Robotics, 2010, 26(3): 411-423.
[31] LI C, WU Y, LÖWE H, et al. POE-based robot kinematic calibration using axis configuration space and the adjoint error model[J]. IEEE Transactions on Robotics, 2016, 32(5): 1264-1279.
[32] WU L, YANG X, CHEN K, et al. A minimal POE-based model for robotic kinematic calibration with only position measurements[J]. IEEE Transactions on Automation Science and Engineering, 2014, 12(2): 758-763.
[33] CHEN I M, YANG G, TAN C T, et al. Local POE model for robot kinematic calibration[J].Mechanism and Machine Theory, 2001, 36(11-12): 1215-1239.
[34] YANG X, WU L, LI J, et al. A minimal kinematic model for serial robot calibration using POE formula[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3): 326-334.
[35] GUÉGAN S, KHALIL W. Dynamic modeling of the Orthoglide[M]//Advances in Robot Kinematics. Springer, 2002: 387-396.
[36] KHALIL W. Dynamic modeling of robots using recursive newton-euler techniques[C]//ICINCO2010. 2010.
[37] 谭春林, 刘新建. 大型挠性空间机械臂动力学与减速比对振动抑制影响[J]. 国防科技大学学报, 2009, 31(4): 5.
[38] BUONDONNO G, DE LUCA A. A recursive Newton-Euler algorithm for robots with elastic joints and its application to control[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 5526-5532.
[39] SUTANTO G, WANG A, LIN Y, et al. Encoding physical constraints in differentiable newton-euler algorithm[C]//Learning for Dynamics and Control. PMLR, 2020: 804-813.
[40] WANG Y, MAO Z, LIN W, et al. Newton-Euler method for dynamic modeling and control of parallel polishing manipulator[C]//2017 IEEE International Conference on Information and Automation (ICIA). IEEE, 2017: 1121-1126.
[41] INIGO R M, MORTON J S. Simulation of the dynamics of an industrial robot[J]. IEEE Transactions on Education, 1991, 34(1): 89-99.
[42] LIN L C, YUAN K. A Lagrange-Euler-assumed modes approach to modeling flexible robotic manipulators[J]. Journal of the chinese institute of engineers, 1988, 11(4): 335-347.
[43] 丁希仑, 陈伟海, 张启先. 空间机器人柔性臂动力学模糊控制的研究[J]. 北京航空航天大学学报, 1999, 25(1): 4.
[44] CHEN W. Dynamic modeling of multi-link flexible robotic manipulators[J]. Computers &Structures, 2001, 79(2): 183-195.
[45] WU G, CARO S, BAI S, et al. Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator[J]. Robotics and Autonomous Systems, 2014, 62(10): 1377-1386.
[46] LIU S, PENG G, GAO H. Dynamic modeling and terminal sliding mode control of a 3-DOFredundantly actuated parallel platform[J]. Mechatronics, 2019, 60: 26-33.
[47] KANE T R, LEVINSON D A. The use of Kane’s dynamical equations in robotics[J]. The International Journal of Robotics Research, 1983, 2(3): 3-21.
[48] GREEN A, SASIADEK J Z. Dynamics and trajectory tracking control of a two-link robot manipulator[J]. Journal of Vibration and Control, 2004, 10(10): 1415-1440.
[49] 章定国, 周胜丰. 柔性杆柔性铰机器人动力学分析[J]. 应用数学和力学, 2006, 27(5): 615-623.
[50] YANG C, HUANG Q, YE Z, et al. Dynamic modeling of spatial 6-DOF parallel robots using Kane method for control purposes[C]//2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics: volume 2. IEEE, 2010: 180-183.
[51] HUSSAIN Z, AZLAN N Z. KANE’s method for dynamic modeling[C]//2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). IEEE, 2016:174-179.
[52] ASADI F, SADATI S H. Full dynamic modeling of the general stewart platform manipulator via Kane’s method[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2018, 42(2): 161-168.
[53] ASCHER U M, PAI D K, CLOUTIER B P. Forward dynamics, elimination methods, and formulation stiffness in robot simulation[J]. The International Journal of Robotics Research,1997, 16(6): 749-758.
[54] MURRAY R M, LI Z, SASTRY S S. A mathematical introduction to robotic manipulation[M].CRC press, 2017.
[55] KIM J. Lie group formulation of articulated rigid body dynamics[R]. Technical report, Carnegie Mellon University, 2012.
[56] 黄晓华, 王兴成. 机器人动力学的李群表示及其应用[J]. 中国机械工程, 2007, 18(2): 201-205.
[57] 丁希仑, 等. 空间弹性变形构件的李群和李代数分析方法[J]. 机械工程学报, 2005, 41(1):16-23.
[58] 邵兵, 吴洪涛, 程世利, 等. 基于李群李代数的主被动关节机器人动力学及控制[J]. 中国机械工程, 2010(3): 5.
[59] 刘会英, 杨彩君, 刘博宇. 基于李群方法的 6 自由度机器人机构动力学分析[J]. 机械设计与研究, 2011, 27(5): 3.
[60] CHAI X, WANG M, XU L, et al. Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory[J]. Ieee Access, 2020, 8: 78868-78878.
[61] HOU Y, ZHANG G, ZENG D. An efficient method for the dynamic modeling and analysis of Stewart parallel manipulator based on the screw theory[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(3):808-821.
修改评论