中文版 | English
题名

用与相变散热的亲水膜的研究

姓名
姓名拼音
TONG Feiran
学号
12032308
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
专业型::0856 材料与化工
导师
邬苏东
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-05-06
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,随着能源危机的显现和环境意识的提高,电动汽车行业得到了快速的发展。我们面临的问题是,为了追求更高的续航里程和加速度,电动汽车对电池循环寿命和电池充放电倍率的要求越来越高,导致动力电池高功率和高倍率充放电时发热密度急剧增加,传统的风冷、液冷等散热方式逐渐显露不足。本文采用了一种新型的电动汽车散热方法,并利用表面为纳米多孔/纤维状结构的阳极氧化铝(AAO)膜的超亲水性和毛细效应实现相变散热的目的。由于表面亲水性受到氧化铝薄膜表面形貌的显著影响,本文通过改变阳极氧化铝制备过程中的阳极氧化电压、阳极氧化时间和磷酸清洗时间等参数来控制阳极氧化铝表面的孔径、孔间隙、表面深度等形貌特征。经过一系列的散热实验研究,当发热功率密度为15 kW/㎡时,我们成功地将模拟电池表面温度保持在25 ℃以下,相比风冷实现了84.2 %的降温(158降至25 ℃),完全符合动力电池的安全工作温度。在本研究中,利用此种阳极氧化铝表面进行相变散热的方法,能够使动力电池在高充放电倍率工作时安全、稳定的运行。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] 陈凌宇,刘敏,钱洲亥,孙桐.新能源汽车动力电池模组智能制造装配技术研究[J].制造业自动化,2022,44(01):187-190.

[2] Cosley M R, Garcia M P. Battery thermal management system[C]//INTELEC 2004. 26th Annual International Telecommunications Energy Conference. IEEE, 2004: 38-45.

[3] Teng H, Yeow K. Design of direct and indirect liquid cooling systems for high-capacity, high-power lithium-ion battery packs[J]. SAE International Journal of Alternative Powertrains, 2012, 1(2): 525-536.

[4] Xia G, Cao L, Bi G. A review on battery thermal management in electric vehicle application[J]. Journal of power sources, 2017, 367: 90-105.

[5] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles[J]. Applied thermal engineering, 2019, 149: 192-212.

[6] Xie J, Ge Z, Zang M, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593.

[7] Hong S, Zhang X, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1204-1212.

[8] Yang N, Zhang X, Li G, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied thermal engineering, 2015, 80: 55-65.

[9] Huo Y, Rao Z, Liu X, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.

[10] Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy conversion and management, 2015, 103: 157-165.

[11] Krüger I L, Limperich D, Schmitz G. Energy consumption of battery cooling in hybrid electric vehicles[J]. 2012.

[12] 第一电动网.纯电代表,宝马i3电池系统及冷却方案解析[EB/OL]. https://zhuanlan.zhihu.com/p/88083501.

[13] Al Hallaj S, Selman J R. A novel thermal management system for electric vehicle batteries using phase‐change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231.

[14] Wang Y, Gao Q, Wang G, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033.

[15] Zolot M D, Kelly K, Keyser M, et al. Thermal evaluation of the Honda insight battery pack[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2001.

[16] Zolot M, Pesaran A A, Mihalic M. Thermal evaluation of Toyota Prius battery pack[J]. SAE technical paper, 2002: 01-1962.

[17] Zhao C, Cao W, Dong T, et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2018, 120: 751-762.

[18] Hamut H S, Dincer I, Naterer G F. Performance assessment of thermal management systems for electric and hybrid electric vehicles[J]. International Journal of Energy Research, 2013, 37(1): 1-12.

[19] Zeff S. My electric journey with a Nissan Leaf: A classic early-adopter experience[J]. IEEE Consumer Electronics Magazine, 2016, 5(3): 79-80.

[20] Teng H, Ma Y, Yeow K, et al. An analysis of a lithium-ion battery system with indirect air cooling and warm-up[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(2011-01-2249): 1343-1357.

[21] Zhang T, Gao Q, Wang G, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662.

[22] Xu X, Li W, Xu B, et al. Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions[J]. Applied Energy, 2019, 250: 404-412.

[23] Drelich J, Chibowski E, Meng D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828.

[24] 李小兵,刘莹. 固体表面润湿性机理及模型[C]//第六届中国功能材料及其应用学术会议论文集(10).2007:229-234.

[25] 潘小勇. 流体力学与传热学[M].江西高校出版社, 2019:11.362.

[26] Janna W S. Engineering heat transfer[M]. CRC press, 2018.

[27] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure[J]. Experimental Thermal and Fluid Science, 2017, 81: 454-465.

[28] Kim H Y, Kang B H. Effects of hydrophilic surface treatment on evaporation heat transfer at the outside wall of horizontal tubes[J]. Applied thermal engineering, 2003, 23(4): 449-458.

[29] Lee S, Köroğlu B, Park C. Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger[J]. International Journal of Refrigeration, 2012, 35(4): 1176-1187.

[30] Xiaodong Xiang. Cooling mechanism for batteries using L-V phase change materials[P]. :US10615471,2020-04-07.

[31] Pesaran A, Keyser M, Kim G H, et al. Tools for designing thermal management of batteries in electric drive vehicles (presentation)[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.

[32] Maleki H, Al Hallaj S, Selman J R, et al. Thermal properties of lithium‐ion battery and components[J]. Journal of the Electrochemical Society, 1999, 146(3): 947.

[33] Yang H, Amiruddin S, Bang H J, et al. A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles[J]. Journal of industrial and engineering chemistry, 2006, 12(1): 12-38.

[34] Buff H, Wöhler F. Justus Liebig’s Ann[J]. Chem, 1857, 104: 94.

[35] Bengough G D, Stuart J M. Improved process of protecting surfaces of aluminium of aluminium alloys[J]. UK patent, 1923, 223(994).

[36] Sheasby P G, Pinner R, Wernick S. The surface treatment and finishing of aluminium and its alloys[M]. Materials Park, OH: ASM international, 2001.

[37] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. science, 1995, 268(5216): 1466-1468.

[38] Masuda H M H, Satoh M S M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask[J]. Japanese Journal of Applied Physics, 1996, 35(1B): L126.

[39] Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum[J]. Journal of the Electrochemical Society, 1953, 100(9): 411.

[40] Diggle J W, Downie T C, Goulding C W. Chem. Rev[J]. 1969.

[41] Despić, A. R. J. Electroanal. Chem[J]. 1985, 191, 417.

[42] Takahashi H, Saito Y, Nagayama M. Effect of Electrolyte Anions on the Formation of Barrier-Type Oxide Films on Aluminum[J]. J. Met. Finish. Soc. Jpn., 1982, 33(5): 225-231.

[43] Thompson G E. Porous anodic alumina: fabrication, characterization and applications[J]. Thin solid films, 1997, 297(1-2): 192-201.

[44] Kape J M. Unusual Anodizing, their Practical Significance[J]. Electroplating and Metal Finishing, 1961, 14: 407.

[45] C Chu S Z, Wada K, Inoue S, et al. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization[J]. Journal of the Electrochemical Society, 2006, 153(9): B384.

[46] Lee W, Park S J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures[J]. Chemical reviews, 2014, 114(15): 7487-7556.

[47] 童斐然,黄明成,李伟轩,徐晨,Hsing-Lin Wang,陈主阳.利用超亲水多孔阳极氧化铝在电池高效散热中的实验研究[C]//中国材料大会2021论文集. 2021:389-396.DOI:10.26914/c.cnkihy.2021.018011.

[48] Mills Anthony. Heat and Mass Transfer[M].Taylor and Francis:2018-05-04.

 

所在学位评定分委会
材料科学与工程系
国内图书分类号
TQ133.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335867
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
童斐然. 用与相变散热的亲水膜的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032308-童斐然-材料科学与工程(3959KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[童斐然]的文章
百度学术
百度学术中相似的文章
[童斐然]的文章
必应学术
必应学术中相似的文章
[童斐然]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。