[1] 陈凌宇,刘敏,钱洲亥,孙桐.新能源汽车动力电池模组智能制造装配技术研究[J].制造业自动化,2022,44(01):187-190.
[2] Cosley M R, Garcia M P. Battery thermal management system[C]//INTELEC 2004. 26th Annual International Telecommunications Energy Conference. IEEE, 2004: 38-45.
[3] Teng H, Yeow K. Design of direct and indirect liquid cooling systems for high-capacity, high-power lithium-ion battery packs[J]. SAE International Journal of Alternative Powertrains, 2012, 1(2): 525-536.
[4] Xia G, Cao L, Bi G. A review on battery thermal management in electric vehicle application[J]. Journal of power sources, 2017, 367: 90-105.
[5] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles[J]. Applied thermal engineering, 2019, 149: 192-212.
[6] Xie J, Ge Z, Zang M, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593.
[7] Hong S, Zhang X, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1204-1212.
[8] Yang N, Zhang X, Li G, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied thermal engineering, 2015, 80: 55-65.
[9] Huo Y, Rao Z, Liu X, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.
[10] Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy conversion and management, 2015, 103: 157-165.
[11] Krüger I L, Limperich D, Schmitz G. Energy consumption of battery cooling in hybrid electric vehicles[J]. 2012.
[12] 第一电动网.纯电代表,宝马i3电池系统及冷却方案解析[EB/OL]. https://zhuanlan.zhihu.com/p/88083501.
[13] Al Hallaj S, Selman J R. A novel thermal management system for electric vehicle batteries using phase‐change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231.
[14] Wang Y, Gao Q, Wang G, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033.
[15] Zolot M D, Kelly K, Keyser M, et al. Thermal evaluation of the Honda insight battery pack[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2001.
[16] Zolot M, Pesaran A A, Mihalic M. Thermal evaluation of Toyota Prius battery pack[J]. SAE technical paper, 2002: 01-1962.
[17] Zhao C, Cao W, Dong T, et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2018, 120: 751-762.
[18] Hamut H S, Dincer I, Naterer G F. Performance assessment of thermal management systems for electric and hybrid electric vehicles[J]. International Journal of Energy Research, 2013, 37(1): 1-12.
[19] Zeff S. My electric journey with a Nissan Leaf: A classic early-adopter experience[J]. IEEE Consumer Electronics Magazine, 2016, 5(3): 79-80.
[20] Teng H, Ma Y, Yeow K, et al. An analysis of a lithium-ion battery system with indirect air cooling and warm-up[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(2011-01-2249): 1343-1357.
[21] Zhang T, Gao Q, Wang G, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662.
[22] Xu X, Li W, Xu B, et al. Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions[J]. Applied Energy, 2019, 250: 404-412.
[23] Drelich J, Chibowski E, Meng D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828.
[24] 李小兵,刘莹. 固体表面润湿性机理及模型[C]//第六届中国功能材料及其应用学术会议论文集(10).2007:229-234.
[25] 潘小勇. 流体力学与传热学[M].江西高校出版社, 2019:11.362.
[26] Janna W S. Engineering heat transfer[M]. CRC press, 2018.
[27] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure[J]. Experimental Thermal and Fluid Science, 2017, 81: 454-465.
[28] Kim H Y, Kang B H. Effects of hydrophilic surface treatment on evaporation heat transfer at the outside wall of horizontal tubes[J]. Applied thermal engineering, 2003, 23(4): 449-458.
[29] Lee S, Köroğlu B, Park C. Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger[J]. International Journal of Refrigeration, 2012, 35(4): 1176-1187.
[30] Xiaodong Xiang. Cooling mechanism for batteries using L-V phase change materials[P]. :US10615471,2020-04-07.
[31] Pesaran A, Keyser M, Kim G H, et al. Tools for designing thermal management of batteries in electric drive vehicles (presentation)[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.
[32] Maleki H, Al Hallaj S, Selman J R, et al. Thermal properties of lithium‐ion battery and components[J]. Journal of the Electrochemical Society, 1999, 146(3): 947.
[33] Yang H, Amiruddin S, Bang H J, et al. A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles[J]. Journal of industrial and engineering chemistry, 2006, 12(1): 12-38.
[34] Buff H, Wöhler F. Justus Liebig’s Ann[J]. Chem, 1857, 104: 94.
[35] Bengough G D, Stuart J M. Improved process of protecting surfaces of aluminium of aluminium alloys[J]. UK patent, 1923, 223(994).
[36] Sheasby P G, Pinner R, Wernick S. The surface treatment and finishing of aluminium and its alloys[M]. Materials Park, OH: ASM international, 2001.
[37] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. science, 1995, 268(5216): 1466-1468.
[38] Masuda H M H, Satoh M S M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask[J]. Japanese Journal of Applied Physics, 1996, 35(1B): L126.
[39] Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum[J]. Journal of the Electrochemical Society, 1953, 100(9): 411.
[40] Diggle J W, Downie T C, Goulding C W. Chem. Rev[J]. 1969.
[41] Despić, A. R. J. Electroanal. Chem[J]. 1985, 191, 417.
[42] Takahashi H, Saito Y, Nagayama M. Effect of Electrolyte Anions on the Formation of Barrier-Type Oxide Films on Aluminum[J]. J. Met. Finish. Soc. Jpn., 1982, 33(5): 225-231.
[43] Thompson G E. Porous anodic alumina: fabrication, characterization and applications[J]. Thin solid films, 1997, 297(1-2): 192-201.
[44] Kape J M. Unusual Anodizing, their Practical Significance[J]. Electroplating and Metal Finishing, 1961, 14: 407.
[45] C Chu S Z, Wada K, Inoue S, et al. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization[J]. Journal of the Electrochemical Society, 2006, 153(9): B384.
[46] Lee W, Park S J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures[J]. Chemical reviews, 2014, 114(15): 7487-7556.
[47] 童斐然,黄明成,李伟轩,徐晨,Hsing-Lin Wang,陈主阳.利用超亲水多孔阳极氧化铝在电池高效散热中的实验研究[C]//中国材料大会2021论文集. 2021:389-396.DOI:10.26914/c.cnkihy.2021.018011.
[48] Mills Anthony. Heat and Mass Transfer[M].Taylor and Francis:2018-05-04.
修改评论