[1] MOSHER M, WATTS M, BARNES M, et al. Microphone array phased processing system(MAPPS): phased array system for acoustic measurements in a wind tunnel[M]. SAE International, 1999.
[2] SIJTSMA P. Phased array beamforming applied to wind tunnel and fly-over tests[M]. SAEInternational, 2010.
[3] DOUGHERTY R. Beamforming in acoustic testing[M]. Springer Berlin Heidelberg, 2002:62-97.
[4] CHIARIOTTI P, MARTARELLI M, CASTELLINI P. Acoustic beamforming for noise sourcelocalization–Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120: 422-448.
[5] SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4): 357-374.
[6] BROOKS T, HUMPHREYS W. A deconvolution approach for the mapping of acoustic sources(DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration,2006, 294(4-5): 856-879.
[7] HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[9] SILVER D, HUANG A, MADDISON C, et al. Mastering the game of Go with deep neuralnetworks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[10] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[11] BIANCO M J, GERSTOFT P, TRAER J, et al. Machine learning in acoustics: a review[J].arXiv preprint arXiv:1905.04418, 2019.
[12] VERA-DIAZ J, PIZARRO D, MACIAS-GUARASA J. Towards end-to-end acoustic localization using deep learning: from audio signals to source position coordinates[J]. Sensors, 2018,18(10): 3418.
[13] PUJOL H, BAVU E, GARCIA A. BeamLearning: An end-to-end deep learning approach forthe angular localization of sound sources using raw multichannel acoustic pressure data[J]. TheJournal of the Acoustical Society of America, 2021, 149(6): 4248-4263.
[14] KUJAWSKI A, HEROLD G, SARRADJ E. A deep learning method for grid-free localizationand quantification of sound sources[J]. The Journal of the Acoustical Society of America, 2019,146(3): 225-231.
[15] LEE S Y, LEE S, JUNG J H. Acoustic source localization for single point source using convolutional neural network and weighted frequency loss[C]//INTER-NOISE and NOISE-CONCongress and Conference Proceedings: volume 261. 2020: 5674-5681.
[16] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[17] LEE S Y, CHANG J, LEE S. Deep learning-based method for multiple sound source localizationwith high resolution and accuracy[J]. Mechanical Systems and Signal Processing, 2021, 161:107959.
[18] LEE S Y, CHANG J, LEE S. Deep learning-enabled high-resolution and fast sound sourcelocalization in spherical microphone array system[J]. IEEE Transactions on Instrumentationand Measurement, 2022, 71: 1-12.
[19] WAGNER G P, BAUERHEIM M, PARISOT-DUPUIS H. Deconvoluting acoustic beamformingmaps with a deep neural network[J]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2021, 263(1): 5397-5408.
[20] CASTELLINI P, GIULIETTI N, FALCIONELLI N, et al. A neural network based microphonearray approach to grid-less noise source localization[J]. Applied Acoustics, 2021, 177: 107947.
[21] MA W, LIU X. Phased microphone array for sound source localization with deep learning[J].Aerospace Systems, 2019, 2(2): 71-81.
[22] XIN C, WANG D, YIN J X, et al. A direct position-determination approach for multiple sourcesbased on neural network computation[J]. Sensors, 2018, 18(6): 1925.
[23] YANGZHOU J Y, MA Z Y, HUANG X. A deep neural network approach to acoustic sourcelocalization in a shallow water tank experiment[J]. The Journal of the Acoustical Society ofAmerica, 2019, 146(6): 4802-4811.
[24] NIU H Q, REEVES E, GERSTOFT P. Source localization in an ocean waveguide using supervised machine learning[J]. The Journal of the Acoustical Society of America, 2017, 142(3):1176-1188.
[25] NIU H Q, GONG Z X, OZANICH E, et al. Deep-learning source localization using multifrequency magnitude-only data[J]. The Journal of the Acoustical Society of America, 2019,146(1): 211-222.
[26] OZANICH E, GERSTOFT P, NIU H Q. A feedforward neural network for direction-of-arrivalestimation[J]. The Journal of the Acoustical Society of America, 2020, 147(3): 2035-2048.
[27] LIU Y N, NIU H Q, LI Z L, et al. Deep-learning source localization using autocorrelation functions from a single hydrophone in deep ocean[J]. JASA Express Letters, 2021, 1(3): 036002.
[28] XU P W, ARCONDOULIS E, LIU Y. Acoustic source imaging using densely connected convolutional networks[J]. Mechanical Systems and Signal Processing, 2021, 151: 107370.
[29] SARRADJ E. Three-dimensional acoustic source mapping with different beamforming steeringvector formulations[J]. Advances in Acoustics and Vibration, 2012, 2012: 1-12.
[30] HEROLD G, SARRADJ E. Performance analysis of microphone array methods[J]. Journal ofSound and Vibration, 2017, 401: 152-168.
[31] DOUGHERTY R P. Functional beamforming[C]//Proceedings on CD of the 5th Berlin Beamforming Conference. 2014.
[32] SARRADJ E, SCHULZE C, ZEIBIG A. Identification of noise source mechanisms using orthogonal beamforming[C]//Noise and Vibration: Emerging Methods. 2005.
[33] MERINO-MARTíNEZ R, SIJTSMA P, SNELLEN M, et al. A review of acoustic imagingmethods using phased microphone arrays[J]. CEAS Aeronautical Journal, 2019, 10(1): 197-230.
[34] BROOKS T, HUMPHREYS W. Extension of DAMAS phased array processing for spatialcoherence determination (DAMAS-C)[M]. 2006: 2654.
[35] DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution inbeamforming[M]. 2008: 12.
[36] BRUSNIAK L. DAMAS2 validation for flight test airframe noise measurements[J]. BerlinBeamforming Confer, 2008.
[37] HECHT-NIELSEN R. Theory of the backpropagation neural network[J]. Neural Networks,1988, 1: 445.
[38] RUMELHART D, HINTON G, WILLIAMS R. Learning representations by back-propagatingerrors[J]. Nature, 1986, 323(6088): 533-536.
[39] NESTEROV Y. Gradient methods for minimizing composite functions[J]. Mathematical Programming, 2012, 140(1): 125-161.
[40] PASCANU R, MIKOLOV T, BENGIO Y. On the diffculty of training recurrent neural networks[C]//International conference on machine learning. 2013: 1310-1318.
[41] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning andstochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(61): 2121-2159.
[42] ZEILER M D. Adadelta: an adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701,2012.
[43] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprintarXiv:1412.6980, 2014.
[44] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to preventneural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1):1929-1958.
[45] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[46] SHEN W B, SETHI G, ZAKKA K, et al. CS231n Convolutional neural networks for visualrecognition[EB/OL]. http://cs231n.github.io/convolutional-networks.
[47] YANG Y N, LIU Y, LIU R, et al. Design, validation, and benchmark tests of the aeroacousticwind tunnel in SUSTech[J]. Applied Acoustics, 2021, 175: 107847.
[48] BROOKS T F, HUMPHREYS W M, PLASSMAN G. DAMAS processing for a phased arraystudy in the NASA langley jet noise laboratory[C]//16th AIAA/CEAS Aeroacoustics Conference. 2010: 37-80.
修改评论