中文版 | English
题名

基于混联腿部构型的双足机器人的运动学分析和样机设计

姓名
姓名拼音
CHE Junjie
学号
11930360
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
潘阳
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文针对传统全铰接式双足机器人动态运动性能差、末端转子惯性大、与环境有机互动难,被动动力驱动机器人步态局限大和应用场景单一等问题,以研究顺应驱动机器人的腿部构型为目的,深入研究了一种基于混联结构的顺应驱动机器人的腿部构型,期望能够应用于双足机器人腿部构型的设计优化上,从腿部性能入手,提高机器人整体动态运动性能。另外,本项目的初衷是希望通过该研究进一步为各类双足机器人运动控制算法应用到实处提供有实现性能的样机,为今后双足机器人的性能发展带来更多的实际应用价值。具体内容如下:

对双足机器人样机腿部构型和整体设计进行研究。针对双足机器人腿部构型进行分析,提出全方位运动、稳定性等需求。就一种顺应驱动腿部构型进行分析和设计优化,并进行自由度分析。根据确定的腿部构型进行样机整体设计,搭建了基于Solidworks的三维模型,给出了样机模型的尺寸等参数,并对机器人关键部位的设计进行了说明。

建立顺应驱动腿部构型的运动学模型,并进行仿真验证。对设计好的腿部构型进行运动学分析,并建立腿部坐标系。根据旋量理论建立正运动学模型,利用解析法建立逆运动学模型。根据搭建好的三维模型,确定腿部坐标系坐标、身体坐标系、世界坐标系的位姿。运用ADAMS软件建立仿真实验平台。对机器人运动轨迹进行规划,并进行机器人踏步步态仿真实验,验证了该腿部构型的运动学建模和三维模型的正确性。

基于设计好的样机构型,搭建了顺应驱动双足机器人的样机,并进行了样机性能测试。搭建了实验控制平台,进行控制模块和运动执行模块的选型。基于双足机器人设计需求,完成双足机器人的加工和组建。开展了机器人样机性能测试实验,包括机器人空中踏步和地面踏步的运动实验。实验结果验证了该样机基本满足步行运动需求。

本文的研究成果,对于基于混联结构的顺应驱动机器人在构型设计和样机开发方面的研究,具有一定的参考和借鉴价值。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] 《中国制造2025》规划系列解读之推动机器人发展科技导报[J]. 2015, 33(21): 76-78.
[2] YAMAGUCHI J I, TAKANISHI A, KATO I. Development of a biped walking robot compensating for three-axis moment by trunk motion[J]. Journal of the Robotics Society of Japan, 1993,11(4): 581-586.
[3] LIM H O, ISHII A, TAKANISHI A. Basic emotional walking using a biped humanoid robot[C]//IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028): volume 4. IEEE, 1999: 954-959.
[4] LIM H O, TAKANISHI A. Waseda biped humanoid robots realizing human-like motion[C]//6th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 00TH8494).IEEE, 2000: 525-530.
[5] ROBOTICS H. Robot Development History[EB/OL]. https://global.honda/innovation/robotics/robot-development-history.html.
[6] HIRAI K. Current and future perspective of Honda humamoid robot[C]//Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS’97: volume 2. IEEE, 1997: 500-508.
[7] HIROSE M. HUMANOIDE ROBOT[J]. Journal of the Robotics Society of Japan, 1997, 15(7): 983-985.
[8] ROBOTICS H. ASIMO[EB/OL]. https://global.honda/innovation/robotics/ASIMO.html.
[9] SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: System overview and integration[C]//IEEE/RSJ international conference on intelligent robots and systems: volume3. IEEE: 2478-2483.
[10] SHIGEMI S, GOSWAMI A, VADAKKEPAT P J H R A R. ASIMO and humanoid robot research at Honda[J]. 2018: 55-90.
[11] KANEKO K, KANEHIRO F, KAJITA S, et al. Design of prototype humanoid robotics platform for HRP[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems: volume 3.IEEE, 2002: 2431-2436.
[12] AKACHI K, KANEKO K, KANEHIRA N, et al. Development of humanoid robot HRP-3P[C]//5th IEEE-RAS International Conference on Humanoid Robots, 2005. IEEE: 50-55.
[13] KANEKO K, KANEHIRO F, MORISAWA M, et al. Humanoid robot hrp-4-humanoid robotics platform with lightweight and slim body[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 4400-4407.
[14] KANEKO K, KAMINAGA H, SAKAGUCHI T, et al. Humanoid Robot HRP-5P: An electrically actuated humanoid robot with high-power and wide-range joints[J]. 2019, 4(2): 1431-1438.
[15] DYNAMICS B. Atlas[EB/OL]. https://www.bostondynamics.com/atlas.
[16] DYNAMICS B. Do you like me?[EB/OL]. https://www.youtube.com/watch?v=fn3KWM1kuAw&ab_channel=BostonDynamics.
[17] LOHMEIER S, BUSCHMANN T, ULBRICH H. Humanoid robot LOLA[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 775-780.
[18] ROBOTS I. Digit[EB/OL]. https://robots.ieee.org/robots/digit/.
[19] ROBOTICS A. Agility Robotics[EB/OL]. https://www.agilityrobotics.com/robots#digit.
[20] ABATE A M. Mechanical design for robot locomotion[J]. 2018.
[21] OTT C, BAUMGäRTNER C, MAYR J, et al. Development of a biped robot with torque controlled joints[C]//2010 10th IEEE-RAS International Conference on Humanoid Robots. IEEE:167-173.
[22] OTT C, ALBU-SCHAFFER A, KUGI A, et al. On the passivity-based impedance control of flexible joint robots[J]. 2008, 24(2): 416-429.
[23] HIRZINGER G, SPORER N, ALBU-SCHAFFER A, et al. DLR’s torque-controlled lightweight robot III-are we reaching the technological limits now?[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292): volume 2. IEEE:1710-1716.
[24] OTT C, EIBERGER O, FRIEDL W, et al. A humanoid two-arm system for dexterous manipulation[C]//2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE: 276-283.
[25] BORST C, WIMBOCK T, SCHMIDT F, et al. Rollin’justin-mobile platform with variable base[C]//2009 IEEE International Conference on Robotics and Automation. IEEE: 1597-1598.
[26] ENGLSBERGER J, WERNER A, OTT C, et al. Overview of the torque-controlled humanoid robot TORO[C]//2014 IEEE-RAS International Conference on Humanoid Robots. IEEE: 916-923.
[27] MESESAN G, ENGLSBERGER J, GAROFALO G, et al. Dynamic walking on compliant and uneven terrain using dcm and passivity-based whole-body control[C]//2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE: 25-32.
[28] WANG J, SHENG T, MA H, et al. Design and dynamic walking control of humanoid robot Blackmann[C]//2006 6th World Congress on Intelligent Control and Automation: volume 2.IEEE: 8848-8852.
[29] 刘莉, 汪劲松, 陈恳, 等. THBIP—I 拟人机器人研究进展[D]. 2002.
[30] ZHAO M, LIU L, WANG J, et al. Control system design of THBIP-I humanoid robot[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292): volume 3. IEEE: 2253-2258.
[31] XIA Z, LIU L, XIONG J, et al. Design aspects and development of humanoid robot THBIP-2[J]. 2008, 26(1): 109.
[32] 陈林. 基于双足机器人步态规划的研究[D/OL]. 2020. DOI: 10.27822/d.cnki.gszxj.2020.000082.
[33] UBTROBOT. Walker[EB/OL]. https://www.ubtrobot.com/cn/products/walker/?area=cn.
[34] HUBICKI C, GRIMES J, JONES M, et al. Atrias: Design and validation of a tether-free 3dcapable spring-mass bipedal robot[J]. The International Journal of Robotics Research, 2016, 35(12): 1497-1521.
[35] COLLINS S, RUINA A, TEDRAKE R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307(5712): 1082-1085.
[36] HOBBELEN D, DE BOER T, WISSE M. System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking[C]//2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2008: 2486-2491.
[37] WISSE M, SCHWAB A L, VAN DER LINDE R Q, et al. How to keep from falling forward: Elementary swing leg action for passive dynamic walkers[J]. IEEE Transactions on robotics, 2005, 21(3): 393-401.
[38] BHOUNSULE P A, CORTELL J, GREWAL A, et al. Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge[J]. The International Journal of Robotics Research, 2014, 33(10): 1305-1321.
[39] RENJEWSKI D, SPRÖWITZ A, HURST J. Exciting passive dynamics in a versatile bipedal robot[J]. IEEE Transactions on Robotics, submitted, 2014.
[40] BLICKHAN R, SEYFARTH A, GEYER H, et al. Intelligence by mechanics[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007,365(1850): 199-220.

所在学位评定分委会
机械与能源工程系
国内图书分类号
O311.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335871
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
车俊杰. 基于混联腿部构型的双足机器人的运动学分析和样机设计[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930360-车俊杰-机械与能源工程(15396KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[车俊杰]的文章
百度学术
百度学术中相似的文章
[车俊杰]的文章
必应学术
必应学术中相似的文章
[车俊杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。