中文版 | English
题名

基于面投影微立体光刻技术制备水凝胶柔性传感器件

姓名
姓名拼音
LI Zhenqing
学号
11930354
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
葛锜
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性传感器是一类柔性材料制备的具有拉伸性、延展性、导电性的柔 性电子器件。柔性传感器件本身固有的可拉伸性,使其在被测对象发生变 形、弯曲、扭转等较大应变时仍旧能够正常工作。而通过将柔性材料与电 阻、电容、压电等电信号相结合,柔性传感器可以实现高度的智能化、集 成化和功能化,因此在可穿戴设备、柔性电子皮肤、人机界面和软体机器 人等领域有着广泛的应用。在柔性传感器的设计中,柔性电极材料的选取 是首要的问题。在众多的柔性材料中,离子导电水凝胶因其本征的柔性、 高度可拉伸性、优异的电导率及良好的生物兼容性在柔性传感领域展现出 极大的发展潜力。水凝胶是一类由高分子交联的三维聚合物网络构成的富 含水的柔性材料。通过水凝胶前驱体溶液与金属盐导电成分的混合掺杂, 水凝胶可轻易获得优良的离子导电能力。面投影微立体光刻技术(PµSL) 是一种基于区域投影触发光聚合的高分辨率 3D 打印技术,能够制造覆盖多 个尺度和多种材料的复杂三维结构,是基于光敏材料的柔性传感器优秀的 制备成形技术。 本文将面投影微立体光刻技术应用在水凝胶柔性传感器的制备上,通 过简化面投影微立体光刻打印工艺制备出牢固且坚韧的三明治式多层水凝 胶弹性体柔性应变传感器,不仅解决了传统制备方法耗时耗力的缺陷,同 时基于弹性体的包裹,水凝胶柔性传感器避免了失水信号偏移的问题,表 现出优异的动态响应特性和环境稳定性。本文分别将该应变传感器粘接到 3D 打印的软体气动驱动器和人手拇指关节上,前者成功实现了驱动器弯曲 角度与传感器的应变之间的线性映射,后者则证明了水凝胶柔性传感器优 异的阵列集成性能。从而大幅扩展了柔性传感器的应用场景和应用领域, 为下一代柔性传感器件的发展与规模化制造打下了坚实的基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Nathan A., Ahnood A., Cole M.T., et al. Flexible Electronics: The Next Ubiquitous Platform [J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1486 -1517.
[2] Song J., Jiang H., Huang Y., et al. Mechanics of stretchable inorganic electronic materials [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, andFilms, 2009, 27(5): 1107-1125.
[3] Lee H.R., Kim C.C., Sun J.Y. Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices [J]. Adv Mater, 2018, 30(42): 1704403.
[4] Xu S., Vogt D.M., Hsu W.H., et al. Biocompatible Soft Fluidic Strain and Fo rce Sensors for Wearable Devices [J]. Adv Funct Mater, 2019, 29(7):1807058.
[5] Yang J.C., Mun J., Kwon S.Y., et al. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics [J]. Adv Mater, 2019, 31(48): 1904765.
[6] Lu L., Jiang C., Hu G., et al. Flexible Noncontact Sensing for Human–Machine Interaction [J]. Adv Mater, 2021, 33(16): 2100218.
[7] Rodrigue H., Wang W., Kim D.-R., et al. Curved shape memory alloy-based soft actuators and application to soft gripper [J]. Composite Structures, 2017, 176(398 -406).
[8] Wang C., Wang C., Huang Z., et al. Materials and Structures toward Soft Electronics [J]. Adv Mater, 2018, 30(50): 1801368.
[9] Ge Q.,Chen Z.,Cheng J.X., et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers [J]. Sci.Adv, 2021, 7(2):eaba4261.
[10] Gu G., Xu H., Peng S., et al. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring [J]. Soft Robot, 2019, 6(3): 368-376.
[11] Xu H., Shen Z., Gu G. Performance characterization of ionic-hydrogel based strain sensors [J]. Science China Technological Sciences, 2020, 63(6): 923-930.
[12] 段建瑞, 李斌, 李帅臻. 常用新型柔性传感器的研究进展 [J]. 传感器与微系统, 2015, 34(11): 1-4+11.
[13] Wang W., Wang S., Rastak R., et al. Strain-insensitive intrinsically stretchable transistors and circuits [J]. Nature Electronics, 2021, 4(2): 143-150.
[14] Kim D.-H., Song J., Choi Won M., et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations [J]. Proceedings of the National Academy of Sciences, 2008, 105(48): 18675 -18680.
[15] Shi L., Li Z., Chen M., et al. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density [J]. Nature communications, 2020, 11(1): 3529-3529.
[16] 贾天夏. 离子导电弹性聚合物的制备及其在柔性传感器中的应用 [D]; 东华大学, 2021.
[17] Peppas N.A., Slaughter B.V., Kanzelberger M.A. Hydrogels [M]. Polymer Science: A Comprehensive Reference. 2012: 385-395.
[18] Flory P.J. Principles of polymer chemistry [M]. BeiJing : World book publishing corp., 2019.
[19] Duan J.-j., Zhang L.-n. Robust and smart hydrogels based on natural polymers [J]. Chinese Journal of Polymer Science, 2017, 35(10): 1165-1180.
[20] Wang Z., Chen L., Chen Y., et al. 3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring [J]. Research (Wash D C), 2020, 1426078.
[21] Wichterle O., LÍm D. Hydrophilic Gels for Biological Use [J]. Nature, 1960, 185(4706): 117-118.
[22] Bidarra S.J., Barrias C.C., Granja P.L. Injectable alginate hydrogels for cell delivery in tissue engineering [J]. Acta Biomater, 2014, 10(4): 1646-1662.
[23] Chaudhuri O., Gu L., Klumpers D., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity [J]. NAT MATER, 2016, 15(3): 326 -334.
[24] Thiele J., Ma Y., Bruekers S.M.C., et al. 25th Anniversary Article: Designer Hydrogels for Cell Cultures: A Materials Selection Guide [J]. Adv Mater, 2014, 26(1): 125-148.
[25] Visser J., Melchels F.P.W., Jeon J.E., et al. Reinforcement of hydrogels using three -dimensionally printed microfibres [J]. Nat Commun, 2015, 6(1): 6933 -6933.
[26] Guo J., Liu X., Jiang N., et al. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers [J]. Adv Mater, 2016, 28(46): 10244-10249.
[27] Zhu L., Qiu J., Sakai E., et al. Rapid Recovery Double Cross-Linking Hydrogel with Stable Mechanical Properties and High Resilience Triggered by Visible Light [J]. ACS Appl Mater Interfaces, 2017, 9(15): 13593-13601.
[28] Dong R., Ma P.X., Guo B. Conductive biomaterials for muscle tissue engineering [J]. Biomaterials, 2020, 229(119584-119584.
[29] Guo Q., Chen J., Wang J., et al. Recent progress in synthesis and application of mussel-inspired adhesives [J]. Nanoscale, 2020, 12(3): 137-1324.
[30] Li L., Yan B., Yang J., et al. Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property [J]. Adv Mater, 2015, 27(7): 1294-1299.
[31] Zhang G., Yang Y., Chen Y., et al. A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries [M]. Wiley-VCH Verlag. 2018.
[32] Cha J.-J., Joo H.J., Park J.H., et al. Impact of genetic variants on major bleeding after percutaneous coronary intervention based on a prospective multicenter registry [J]. SCI REP-UK, 2021, 11(1): 1790-1790.
[33] Clegg J.R., Ludolph C.M., Peppas N.A. QCM‐D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels [J]. Journal of applied polymer science, 2020, 137(25): 48655.
[34] Hao G.-P., Hippauf F., Oschatz M., et al. Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors [J]. ACS nano, 2014, 8(7): 7138 -7146.
[35] Keplinger C., Sun J.-Y., Choon Chiang F.O.O., et al. Stretchable, Transparent, Ionic Conductors [J]. Science, 2013, 341(6149): 984-987.
[36] Gwon S.H., Oh J.-H., Kim M., et al. Sewable soft shields for the γ-ray radiation [J]. Sci Rep, 2018, 8(1): 1852-1857.
[37] Peng Q., Chen J., Wang T., et al. Recent advances in designing conductive hydrogels for flexible electronics [J]. InfoMat, 2020, 2(5): 843-865.
[38] Han L., Liu K., Wang M., et al. Mussel ‐ Inspired Adhesive and Conductive Hydrogel with Long‐Lasting Moisture and Extreme Temperature Tolerance [J]. Advanced Functional Materials, 2018, 28(3): 1704195.
[39] Wang H., Zhu B., Jiang W., et al. A Mechanically and Electrically Self-Healing Supercapacitor [J]. Adv Mater, 2014, 26(22): 3638-3643.
[40] Huang Y., Zhong M., Shi F., et al. An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte [J]. Angew Chem Int Ed Engl, 2017, 56(31): 9141-9145.
[41] Liu S., Zheng R., Chen S., et al. A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor [J]. Journal of Materials Chemistry C, 2018, 6(15): 4183-4190.
[42] Zhu T., Cheng Y., Cao C., et al. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance [J]. Chemical Engineering Journal, 2020, 385:123912.
[43] Wang Z., Chen J., Wang L., et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels [J]. J Mater Chem B, 2019, 7(1): 24-29.
[44] Sun J.Y., Keplinger C., Whitesides G.M., et al. Ionic skin [J]. Adv Mater, 2014, 26(45): 7608-7614.
[45] Lei Z., Wang Q., Sun S., et al. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing [J]. Adv Mater, 2017, 29(22):1700321.
[46] Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review [J]. Int J Adv Manuf Technol, 2015, 83(1 -4): 389-405.
[47] Ge Q., Li Z., Wang Z., et al. Projection micro stereolithography based 3D printing and its applications [J]. International Journal of Extreme Manufacturing, 2020, 2(2):022004.
[48] Skylar-Scott M.A., Mueller J., Visser C.W., et al. Voxelated soft matter via multimaterial multinozzle 3D printing [J]. Nature (London), 2019, 575(7782): 330-335.
[49] Yin Q., Guo Q., Wang Z., et al. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation [J]. ACS Appl Mater Interfaces, 2021, 13(1): 1979-1987.
[50] Sun C., Fang N., Wu D.M., et al. Projection micro-stereolithography using digital micro-mirror dynamic mask [J]. Sensors and actuators A Physical, 2005, 121(1): 113 -120.
[51] Zheng X., Deotte J., Alonso M.P., et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system [J]. Rev Sci Instrum, 2012, 83(12): 125001-125001.
[52] Zheng X., Smith W., Jackson J., et al. Multiscale metallic metamaterials [J]. NAT MATER, 2016, 15(10): 1100-1106.
[53] Kowsari K., Akbari S., Wang D., et al. High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing [J]. 3D printing and additive manufacturing, 2018, 5(3): 185 -193.
[54] Zhang B., Li S., Hingorani H., et al. Highly str etchable hydrogels for UV curing based high-resolution multimaterial 3D printing [J]. Journal of Materials Chemistry B, 2018, 6(20): 3246-3253.
[55] Liang X., Chen G., Lin S., et al. Bioinspired 2D Isotropically Fatigue -Resistant Hydrogels [J]. Adv Mater, 2022, 34(8): 2107106.
[56] Cheng S., Narang Y.S., Yang C., et al. Stick‐On Large‐Strain Sensors for Soft Robots [J]. Advanced Materials Interfaces, 2019, 6(20):1900985
[57] Pawar A.A., Saada G., Cooperstein I., et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles [J]. Sci Adv, 2016, 2(4): 1501381.
[58] Gruber H.F. Photoinitiators for free radical polymerization [J]. Progress in Polymer Science, 1992, 17(6): 953-1044.
[59] Yuk H., Zhang T., Parada G.A., et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures [J]. Nat Commun, 2016, 7(1): 12028-12028.
[60] Shi L., Zhu T., Gao G., et al. Highly stretchable and transparent ionic conducting elastomers [J]. Nat Commun, 2018, 9(1): 2630-2630.
[61] Bai Y., Chen B., Xiang F., et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt [J]. Applied Physics Letters, 2014, 105(15): 151903.
[62] Liu Q., Nian G., Yang C., et al. Bonding dissimilar polymer networks in various manufacturing processes [J]. Nat Commun, 2018, 9(1): 846-846.
[63] Li Z., He X., Cheng J., et al. Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method [J]. International Journal of Smart and Nano Materials, 2021, 12(3): 256-268.
[64] Jin L., Chortos A., Lian F., et al. Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors [J]. Proc Natl Acad Sci U S A, 2018, 115(9): 1986-1991.
[65] Huang J., Yang J., Jin L., et al. Pattern formation in plastic liquid films on elastomers by ratcheting [J]. Soft Matter, 2016, 12(16): 382-387.
[66] Pan L., Yu G., Zhai D., et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity [J]. Proc Natl Acad Sci U S A, 2012, 109(24): 9287-9292

所在学位评定分委会
机械与能源工程系
国内图书分类号
TH165
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335873
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
李振卿. 基于面投影微立体光刻技术制备水凝胶柔性传感器件[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930354-李振卿-机械与能源工程(3899KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李振卿]的文章
百度学术
百度学术中相似的文章
[李振卿]的文章
必应学术
必应学术中相似的文章
[李振卿]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。