[1] Nathan A., Ahnood A., Cole M.T., et al. Flexible Electronics: The Next Ubiquitous Platform [J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1486 -1517.
[2] Song J., Jiang H., Huang Y., et al. Mechanics of stretchable inorganic electronic materials [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, andFilms, 2009, 27(5): 1107-1125.
[3] Lee H.R., Kim C.C., Sun J.Y. Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices [J]. Adv Mater, 2018, 30(42): 1704403.
[4] Xu S., Vogt D.M., Hsu W.H., et al. Biocompatible Soft Fluidic Strain and Fo rce Sensors for Wearable Devices [J]. Adv Funct Mater, 2019, 29(7):1807058.
[5] Yang J.C., Mun J., Kwon S.Y., et al. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics [J]. Adv Mater, 2019, 31(48): 1904765.
[6] Lu L., Jiang C., Hu G., et al. Flexible Noncontact Sensing for Human–Machine Interaction [J]. Adv Mater, 2021, 33(16): 2100218.
[7] Rodrigue H., Wang W., Kim D.-R., et al. Curved shape memory alloy-based soft actuators and application to soft gripper [J]. Composite Structures, 2017, 176(398 -406).
[8] Wang C., Wang C., Huang Z., et al. Materials and Structures toward Soft Electronics [J]. Adv Mater, 2018, 30(50): 1801368.
[9] Ge Q.,Chen Z.,Cheng J.X., et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers [J]. Sci.Adv, 2021, 7(2):eaba4261.
[10] Gu G., Xu H., Peng S., et al. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring [J]. Soft Robot, 2019, 6(3): 368-376.
[11] Xu H., Shen Z., Gu G. Performance characterization of ionic-hydrogel based strain sensors [J]. Science China Technological Sciences, 2020, 63(6): 923-930.
[12] 段建瑞, 李斌, 李帅臻. 常用新型柔性传感器的研究进展 [J]. 传感器与微系统, 2015, 34(11): 1-4+11.
[13] Wang W., Wang S., Rastak R., et al. Strain-insensitive intrinsically stretchable transistors and circuits [J]. Nature Electronics, 2021, 4(2): 143-150.
[14] Kim D.-H., Song J., Choi Won M., et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations [J]. Proceedings of the National Academy of Sciences, 2008, 105(48): 18675 -18680.
[15] Shi L., Li Z., Chen M., et al. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density [J]. Nature communications, 2020, 11(1): 3529-3529.
[16] 贾天夏. 离子导电弹性聚合物的制备及其在柔性传感器中的应用 [D]; 东华大学, 2021.
[17] Peppas N.A., Slaughter B.V., Kanzelberger M.A. Hydrogels [M]. Polymer Science: A Comprehensive Reference. 2012: 385-395.
[18] Flory P.J. Principles of polymer chemistry [M]. BeiJing : World book publishing corp., 2019.
[19] Duan J.-j., Zhang L.-n. Robust and smart hydrogels based on natural polymers [J]. Chinese Journal of Polymer Science, 2017, 35(10): 1165-1180.
[20] Wang Z., Chen L., Chen Y., et al. 3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring [J]. Research (Wash D C), 2020, 1426078.
[21] Wichterle O., LÍm D. Hydrophilic Gels for Biological Use [J]. Nature, 1960, 185(4706): 117-118.
[22] Bidarra S.J., Barrias C.C., Granja P.L. Injectable alginate hydrogels for cell delivery in tissue engineering [J]. Acta Biomater, 2014, 10(4): 1646-1662.
[23] Chaudhuri O., Gu L., Klumpers D., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity [J]. NAT MATER, 2016, 15(3): 326 -334.
[24] Thiele J., Ma Y., Bruekers S.M.C., et al. 25th Anniversary Article: Designer Hydrogels for Cell Cultures: A Materials Selection Guide [J]. Adv Mater, 2014, 26(1): 125-148.
[25] Visser J., Melchels F.P.W., Jeon J.E., et al. Reinforcement of hydrogels using three -dimensionally printed microfibres [J]. Nat Commun, 2015, 6(1): 6933 -6933.
[26] Guo J., Liu X., Jiang N., et al. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers [J]. Adv Mater, 2016, 28(46): 10244-10249.
[27] Zhu L., Qiu J., Sakai E., et al. Rapid Recovery Double Cross-Linking Hydrogel with Stable Mechanical Properties and High Resilience Triggered by Visible Light [J]. ACS Appl Mater Interfaces, 2017, 9(15): 13593-13601.
[28] Dong R., Ma P.X., Guo B. Conductive biomaterials for muscle tissue engineering [J]. Biomaterials, 2020, 229(119584-119584.
[29] Guo Q., Chen J., Wang J., et al. Recent progress in synthesis and application of mussel-inspired adhesives [J]. Nanoscale, 2020, 12(3): 137-1324.
[30] Li L., Yan B., Yang J., et al. Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property [J]. Adv Mater, 2015, 27(7): 1294-1299.
[31] Zhang G., Yang Y., Chen Y., et al. A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries [M]. Wiley-VCH Verlag. 2018.
[32] Cha J.-J., Joo H.J., Park J.H., et al. Impact of genetic variants on major bleeding after percutaneous coronary intervention based on a prospective multicenter registry [J]. SCI REP-UK, 2021, 11(1): 1790-1790.
[33] Clegg J.R., Ludolph C.M., Peppas N.A. QCM‐D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels [J]. Journal of applied polymer science, 2020, 137(25): 48655.
[34] Hao G.-P., Hippauf F., Oschatz M., et al. Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors [J]. ACS nano, 2014, 8(7): 7138 -7146.
[35] Keplinger C., Sun J.-Y., Choon Chiang F.O.O., et al. Stretchable, Transparent, Ionic Conductors [J]. Science, 2013, 341(6149): 984-987.
[36] Gwon S.H., Oh J.-H., Kim M., et al. Sewable soft shields for the γ-ray radiation [J]. Sci Rep, 2018, 8(1): 1852-1857.
[37] Peng Q., Chen J., Wang T., et al. Recent advances in designing conductive hydrogels for flexible electronics [J]. InfoMat, 2020, 2(5): 843-865.
[38] Han L., Liu K., Wang M., et al. Mussel ‐ Inspired Adhesive and Conductive Hydrogel with Long‐Lasting Moisture and Extreme Temperature Tolerance [J]. Advanced Functional Materials, 2018, 28(3): 1704195.
[39] Wang H., Zhu B., Jiang W., et al. A Mechanically and Electrically Self-Healing Supercapacitor [J]. Adv Mater, 2014, 26(22): 3638-3643.
[40] Huang Y., Zhong M., Shi F., et al. An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte [J]. Angew Chem Int Ed Engl, 2017, 56(31): 9141-9145.
[41] Liu S., Zheng R., Chen S., et al. A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor [J]. Journal of Materials Chemistry C, 2018, 6(15): 4183-4190.
[42] Zhu T., Cheng Y., Cao C., et al. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance [J]. Chemical Engineering Journal, 2020, 385:123912.
[43] Wang Z., Chen J., Wang L., et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels [J]. J Mater Chem B, 2019, 7(1): 24-29.
[44] Sun J.Y., Keplinger C., Whitesides G.M., et al. Ionic skin [J]. Adv Mater, 2014, 26(45): 7608-7614.
[45] Lei Z., Wang Q., Sun S., et al. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing [J]. Adv Mater, 2017, 29(22):1700321.
[46] Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review [J]. Int J Adv Manuf Technol, 2015, 83(1 -4): 389-405.
[47] Ge Q., Li Z., Wang Z., et al. Projection micro stereolithography based 3D printing and its applications [J]. International Journal of Extreme Manufacturing, 2020, 2(2):022004.
[48] Skylar-Scott M.A., Mueller J., Visser C.W., et al. Voxelated soft matter via multimaterial multinozzle 3D printing [J]. Nature (London), 2019, 575(7782): 330-335.
[49] Yin Q., Guo Q., Wang Z., et al. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation [J]. ACS Appl Mater Interfaces, 2021, 13(1): 1979-1987.
[50] Sun C., Fang N., Wu D.M., et al. Projection micro-stereolithography using digital micro-mirror dynamic mask [J]. Sensors and actuators A Physical, 2005, 121(1): 113 -120.
[51] Zheng X., Deotte J., Alonso M.P., et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system [J]. Rev Sci Instrum, 2012, 83(12): 125001-125001.
[52] Zheng X., Smith W., Jackson J., et al. Multiscale metallic metamaterials [J]. NAT MATER, 2016, 15(10): 1100-1106.
[53] Kowsari K., Akbari S., Wang D., et al. High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing [J]. 3D printing and additive manufacturing, 2018, 5(3): 185 -193.
[54] Zhang B., Li S., Hingorani H., et al. Highly str etchable hydrogels for UV curing based high-resolution multimaterial 3D printing [J]. Journal of Materials Chemistry B, 2018, 6(20): 3246-3253.
[55] Liang X., Chen G., Lin S., et al. Bioinspired 2D Isotropically Fatigue -Resistant Hydrogels [J]. Adv Mater, 2022, 34(8): 2107106.
[56] Cheng S., Narang Y.S., Yang C., et al. Stick‐On Large‐Strain Sensors for Soft Robots [J]. Advanced Materials Interfaces, 2019, 6(20):1900985
[57] Pawar A.A., Saada G., Cooperstein I., et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles [J]. Sci Adv, 2016, 2(4): 1501381.
[58] Gruber H.F. Photoinitiators for free radical polymerization [J]. Progress in Polymer Science, 1992, 17(6): 953-1044.
[59] Yuk H., Zhang T., Parada G.A., et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures [J]. Nat Commun, 2016, 7(1): 12028-12028.
[60] Shi L., Zhu T., Gao G., et al. Highly stretchable and transparent ionic conducting elastomers [J]. Nat Commun, 2018, 9(1): 2630-2630.
[61] Bai Y., Chen B., Xiang F., et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt [J]. Applied Physics Letters, 2014, 105(15): 151903.
[62] Liu Q., Nian G., Yang C., et al. Bonding dissimilar polymer networks in various manufacturing processes [J]. Nat Commun, 2018, 9(1): 846-846.
[63] Li Z., He X., Cheng J., et al. Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method [J]. International Journal of Smart and Nano Materials, 2021, 12(3): 256-268.
[64] Jin L., Chortos A., Lian F., et al. Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors [J]. Proc Natl Acad Sci U S A, 2018, 115(9): 1986-1991.
[65] Huang J., Yang J., Jin L., et al. Pattern formation in plastic liquid films on elastomers by ratcheting [J]. Soft Matter, 2016, 12(16): 382-387.
[66] Pan L., Yu G., Zhai D., et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity [J]. Proc Natl Acad Sci U S A, 2012, 109(24): 9287-9292
修改评论