[1] 周济. 智能制造——“中国制造2025”的主攻方向 [J]. 中国机械工程, 2015, 26(17): 2273-84.
[2] 高峰, 郭为忠. 中国机器人的发展战略思考 [J]. 机械工程学报, 2016, 52(07): 1-5.
[3] 武雨飞. 探究智能移动机器人的现状及展望 [J]. 中国战略新兴产业, 2018, (12): 148.
[4] 徐国保, 尹怡欣, 周美娟. 智能移动机器人技术现状及展望 [J]. 机器人技术与应用, 2007, (02): 29-34.
[5] ZHONG Y, WANG R, FENG H, et al. Analysis and research of quadruped robot’s legs: A comprehensive review [J]. International Journal of Advanced Robotic Systems, 2019, 16(3).
[6] MOSHER R. Test and evaluation of a versatile walking truck; proceedings of the Proceedings of Off-Road Mobility Research Symposium, Washington DC, 1968, F, 1968 [C].
[7] HIROSE S. Some considerations on a feasible walking mechanism as a terrain vehicle; proceedings of the 3rd CISM-IFToMM Int Symp on Theory and Practice of Robots and Manipulators, F, 1978 [C].
[8] HIROSE S. Adaptive gait control of a quadruped walking vehicle; proceedings of the Robotics Research: 1st Int Symp on Robotics Research (ISRR1), F, 1983 [C].
[9] ARIKAWA K, HIROSE S. Development of quadruped walking robot TITAN-VIII; proceedings of the Proc of International Conference on Intelligent Robots & Systems, F, 1996 [C].
[10] HODOSHIMA R, DOI T, FUKUDA Y, et al. Development of TITAN XI: a quadruped walking robot to work on slopes; proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat No 04CH37566), F, 2004 [C]. IEEE.
[11] KATO K, HIROSE S. Development of the quadruped walking robot, TITAN-IX — mechanical design concept and application for the humanitarian de-mining robot [J]. Adv Robot, 2012, 15(2): 191-204.
[12] RAIBERT M H, BROWN H B, CHEPPONIS M. Experiments in Balance with a 3d One-Legged Hopping Machine [J]. Int J Robot Res, 1984, 3(2): 75-92.
[13] RAIBERT M, CHEPPONIS M, BROWN H. Running on four legs as though they were one [J]. IEEE Journal on Robotics and Automation, 1986, 2(2): 70-82.
[14] RAIBERT M H. Legged robots that balance [M]. MIT press, 1986.
[15] NELSON G, BLANKESPOOR K, RAIBERT M. Walking BigDog: Insights and challenges from legged robotics [J]. Journal of biomechanics, 2006, (39): S360.
[16] RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the Rough-Terrain Quadruped Robot [J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-5.
[17] DYNAMICS B. LS3-Legged Squad Support System [Z]. https://www.youtube.com/watch?v=R7ezXBEBE6U. 2012
[18] DYNAMICS B. Introducing WildCat [Z]. https://www.youtube.com/watch?v=wE3fmFTtP9g&t=62s. 2013
[19] DYNAMICS B. Introducing Spot (previously SpotMini) [Z]. https://www.youtube.com/watch?v=tf7IEVTDjng. 2016
[20] DYNAMICS B. Spot Launch [Z]. https://www.youtube.com/watch?v=wlkCQXHEgjA. 2019
[21] HABERLAND M, KARSSEN J D, KIM S, et al. The effect of swing leg retraction on running energy efficiency; proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, F, 2011 [C]. IEEE.
[22] KARSSEN J D, HABERLAND M, WISSE M, et al. The optimal swing-leg retraction rate for running; proceedings of the 2011 IEEE International Conference on Robotics and Automation, F, 2011 [C]. IEEE.
[23] SEOK S, WANG A, OTTEN D, et al. Actuator Design for High Force Proprioceptive Control in Fast Legged Locomotion [J]. 2012 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), 2012: 1963-8.
[24] VALENZUELA A K, KIM S. Optimally scaled hip-force planning: A control approach for quadrupedal running; proceedings of the 2012 IEEE International Conference on Robotics and Automation, F, 2012 [C]. IEEE.
[25] PARK H W, PARK S, KIM S. Variable-speed Quadrupedal Bounding Using Impulse Planning: Untethered High-speed 3D Running of MIT Cheetah 2 [J]. Ieee Int Conf Robot, 2015: 5163-70.
[26] PARK H-W, WENSING P M, KIM S. High-speed bounding with the MIT Cheetah 2: Control design and experiments [J]. The International Journal of Robotics Research, 2017, 36(2): 167-92.
[27] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot [Z]. Ieee Int C Int Robot. 2018: 2245-52.10.1109/iros.2018.8593885
[28] KATZ B G. A low cost modular actuator for dynamic robots [D]; Massachusetts Institute of Technology, 2018.
[29] HUTTER M, REMY C D, HöPFLINGER M A, et al. SLIP running with an articulated robotic leg; proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, F 18-22 Oct. 2010, 2010 [C].
[30] HUTTER M, REMY C D, HOEPFLINGER M A, et al. Efficient and Versatile Locomotion With Highly Compliant Legs [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 449-58.
[31] HUTTER M, GEHRING C, JUD D, et al. ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot [J]. 2016 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros 2016), 2016: 38-44.
[32] GEHRING C, BELLICOSO C D, COROS S, et al. Dynamic Trotting on Slopes for Quadrupedal Robots [J]. 2015 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), 2015: 5129-35.
[33] FANKHAUSER P, BELLICOSO C D, GEHRING C, et al. Free Gait - An Architecture for the Versatile Control of Legged Robots [J]. Ieee-Ras Int C Human, 2016: 1052-8.
[34] GEHRING C, COROS S, HUTTER M, et al. Practice Makes Perfect: An Optimization-Based Approach to Controlling Agile Motions for a Quadruped Robot [J]. IEEE Robotics & Automation Magazine, 2016, 23(1): 34-43.
[35] BELLICOSO C D, JENELTEN F, FANKHAUSER P, et al. Dynamic Locomotion and Whole-Body Control for Quadrupedal Robots [J]. 2017 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), 2017: 3359-65.
[36] 张秀丽. 四足机器人节律运动及环境适应性的生物控制研究 [D]; 清华大学, 2004.
[37] ZHANG X L, HAOJUN Z J, LIU P, et al. Designing a quadrupedal robot mimicking cat locomotion [J]. Ieee Sys Man Cybern, 2006: 4471-+.
[38] ZHANG X L, ZHENG H J, GUAN X, et al. A biological inspired quadruped robot: Structure and control [J]. 2005 Ieee International Conference on Robotics and Biomimetics, 2006: 387-+.
[39] ZHANG X, ZHENG H, CHEN L. Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model [J]. Adv Robot, 2012, 20(7): 849-66.
[40] 何冬青, 马培荪. 四足机器人动态步行仿真及步行稳定性分析 [J]. 计算机仿真, 2005, 22(2): 146-9.
[41] 李彬. 视觉地形分类和四足机器人步态规划方法研究与应用 [D]; 山东大学, 2012.
[42] 李贻斌, 李彬, 荣学文, et al. 液压驱动四足仿生机器人的结构设计和步态规划 [J]. 山东大学学报(工学版), 2011, 41(05): 32-6+45.
[43] 柴汇, 孟健, 荣学文, et al. 高性能液压驱动四足机器人SCalf的设计与实现 [J]. 机器人, 2014, 36(04): 385-91.
[44] 柴汇. 液压驱动四足机器人柔顺及力控制方法的研究与实现 [D]; 山东大学, 2016.
[45] 刘斌. 四足机器人落地过程中缓冲策略的研究 [D]; 山东大学, 2017.
[46] UNITREE. Robot [Z]. https://www.unitree.com/cn/. 2020
[47] 王兴兴. 新型电驱动式四足机器人研制与测试 [D]; 上海大学, 2016.
[48] 朱秋国. 浅谈四足机器人的发展历史、现状与未来 [J]. 杭州科技, 2017, (02): 47-50.
[49] 朱秋国. “绝影”机器人助力智慧安防 [J]. 中国测绘, 2019, (03): 31-3.
[50] 周坤, 李川, 李超, et al. 面向未知复杂地形的四足机器人运动规划方法 [J]. 机械工程学报, 2020, 56(02): 210-9.
[51] 云深处科技. 绝影 [Z]. https://www.deeprobotics.cn/products.html. 2020
[52] 蔡润斌. 四足机器人运动规划及协调控制 [D]; 国防科学技术大学, 2013.
[53] MCGHEE R B. Some finite state aspects of legged locomotion [J]. Mathematical Biosciences, 1968, 2(1-2): 67-84.
[54] BLEDT G, WENSING P M, KIM S. Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah; proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), F, 2017 [C]. IEEE.
[55] BLEDT G, WENSING P M, INGERSOLL S, et al. Contact model fusion for event-based locomotion in unstructured terrains; proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), F, 2018 [C]. IEEE.
[56] 熊蓉. 仿生腿足式机器人的发展——浙江大学控制学院机器人实验室熊蓉教授谈国内外腿足式机器人研究情况 [J]. 机器人技术与应用, 2017, 000(002): 29-36.
[57] ARM P, ZENKL R, BARTON P, et al. Spacebok: A dynamic legged robot for space exploration; proceedings of the 2019 international conference on robotics and automation (ICRA), F, 2019 [C]. IEEE.
[58] KAU N, SCHULTZ A, FERRANTE N, et al. Stanford doggo: An open-source, quasi-direct-drive quadruped; proceedings of the 2019 International conference on robotics and automation (ICRA), F, 2019 [C]. IEEE.
[59] SEOK S, WANG A, CHUAH M Y, et al. Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot [J]. 2013 Ieee International Conference on Robotics and Automation (Icra), 2013: 3307-12.
[60] GALLARDO-ALVARADO J, RODRíGUEZ-CASTRO R, DELOSSANTOS-LARA P J. Kinematics and dynamics of a 4- P RUR Schönflies parallel manipulator by means of screw theory and the principle of virtual work [J]. Mechanism and Machine Theory, 2018, 122: 347-60.
[61] DE JONG J J, VAN DIJK J, HERDER J L. A screw based methodology for instantaneous dynamic balance [J]. Mechanism and Machine Theory, 2019, 141: 267-82.
[62] DU W, FNADI M, BENAMAR F. Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics [J]. Mechanism and Machine Theory, 2020, 153.
[63] FEATHERSTONE R. Rigid Body Dynamics Algorithms [J]. Springer US, Boston, MA,, 2008.
[64] KIMURA H, FUKUOKA Y, COHEN A H. Biologically inspired adaptive walking of a quadruped robot [J]. Philos Trans A Math Phys Eng Sci, 2007, 365(1850): 153-70.
[65] POLET D T, BERTRAM J E A. An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal [J]. Plos Comput Biol, 2019, 15(11).
[66] GARCIA E, DE SANTOS P G. On the improvement of walking performance in natural environments by a compliant adaptive gait [J]. Ieee T Robot, 2006, 22(6): 1240-53.
[67] VUKOBRATOVIĆ M, BOROVAC B. Zero-moment point—thirty five years of its life [J]. International journal of humanoid robotics, 2004, 1(01): 157-73.
修改评论