中文版 | English
题名

计及P2P能源交易的综合能源系统优化调度与经济运行

其他题名
ENERGY SCHEDULING REGIME FOR INTEGRATED ENERGY SYSTEMS UNDER PEER-TO-PEER ENERGY TRADING
姓名
姓名拼音
Shi Mengge
学号
11930173
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
嘉有为
导师单位
电子与电气工程系
论文答辩日期
2022-05-09
论文提交日期
2022-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

由于可再生能源出力具有随机性、波动性等特征,目前可再生能源消纳问题也愈加明显,如何处理电力无法长时间存储的问题是解决上述问题的关键所在。综合能源系统可以通过内部各个单元的协同运行,有效实现电--热等多种能源的互补,降低弃风、弃光率。随着综合能源系统的迅猛发展,将多个地理位置接近的综合能源系统互相连接并以集群的形式运行是必然的发展趋势,这种端对端的能源交易有利于提高各综合能源系统运行的安全性与可靠性,并实现可再生能源的就地消纳与高效利用。

综合能源系统群中的各系统间存在能量交互,如电能交易和热能交易。综合能源系统群的优化调度策略的目标是实现综合能源系统群整体最优运行,需要同时考虑各系统自身的经济运行问题,以及综合能源系统之间功率交互问题。

对于解决可再生能源电源出力的随机性给综合能源系统群的优化调度带来的问题,本文构建了基于柔性加权管模型预测控制方法的三阶段能量管理策略,其中包括日前的鲁棒能量管理,日内和实时在线滚动时域能量管理。为了可靠地保障各用户的隐私,以子综合能源系统间的交互功率为优化问题的耦合变量,将传统的集中式优化解耦为各子综合能源系统的子优化问题,采用交替方向乘子法对问题进行求解,并结合求解结果对惩罚因子进行更新。通过算例仿真验证了柔性加权管模型预测控制方法在不确定性信息下的经济性,以及改进交替方向乘子法的有效性和收敛性。

其他摘要

Due to the randomness and volatility of renewable energy output, the consumption problem of renewable energy is becoming more obvious. How to deal with the problem that electricity cannot be stored for a long time is the key to solving the above problem. The integrated energy system can effectively realize the complementing of electricity, hydrogen, heat, and other energy through the collaborative operation of each internal unit and reduce the abandonment rate of wind and solar power. With the rapid development of integrated energy systems, it is an inevitable development trend to connect multiple integrated energy systems with close geographical locations and run them in the form of clusters. The peer-to-peer (P2P) energy trading is conducive to improving the security and reliability of the operation of the integrated energy system and realizing the local consumption and efficient utilization of renewable energy.

There is energy trading among the systems in the integrated energy system cluster, such as power trading and heat energy trading. The objective of the optimal energy scheduling strategy of an integrated energy system cluster is to achieve the overall optimal operation of an integrated energy system cluster, and the economic operation of each system and the power interaction between integrated energy systems should be considered at the same time.

To solve the problem of optimal energy scheduling of integrated energy system clusters caused by the randomness of renewable energy output, this paper constructed a multi-stage energy management strategy based on the flexible weighted tube model predictive control (MPC) method, including day-ahead, intra-day, and real-time stage. To reliably ensure the privacy for each integrated energy system, in the interaction between integrated energy system power for the optimization problem of coupled variables, the traditional centralized optimal decoupling for each integrated energy system of sub-optimization problems, using alternating direction multiplier method with varying penalty factors to solve the problem. The economy of the flexible weighted tube MPC method under uncertain information and the effectiveness and convergence of the improved alternating direction multiplier method is verified by numerical simulation.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 杨经纬,张宁,王毅,等.面向可再生能源消纳的多能源系统:述评与展望[J].电力系统自动化,2018,42(04):11-24.
[2] 桑博,张涛,刘亚杰,等.多微电网能量管理系统研究综述[J].中国电机工程学报,2020,40(10):3077-3093.
[3] 舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(01):1-9.
[4] TENG Y, WANG ZD, LI Y, et al. Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility[J]. CSEE Journal of Power and Energy Systems, 2019, 5(2): 266-274.
[5] 李争,张蕊,孙鹤旭,等.可再生能源多能互补制-储-运氢关键技术综述[J].电工技术学报,2021,36(03):446-462.
[6] 王伟亮,王丹,贾宏杰,等.能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J].中国电机工程学报,2016,36(12):3292-3306.
[7] ZHU DL, WANG B, MA HR, et al. Evaluating the vulnerability of integrated electricity-heat-gas systems based on the high-dimensional random matrix theory[J]. CSEE Journal of Power and Energy Systems, 2019, 6(4): 878-889.
[8] 贾宏杰,王丹,徐宪东,等.区域综合能源系统若干问题研究[J].电力系统自动化,2015,39(07):198-207.
[9] 程耀华,张宁,康重庆,等.低碳多能源系统的研究框架及展望[J].中国电机工程学报,2017,37(14):4060-4069+4285.
[10] TIAN LT, CHENG L, GUO JB, et al. System modeling and optimal dispatching of multi-energy microgrid with energy storage[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 809-819.
[11] 赵霞,杨仑,瞿小斌,等.电-气综合能源系统能流计算的改进方法[J].电工技术学报,2018,33(03):467-477.
[12] PALZER A, HENNING H M. A comprehensive model for the german electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies–Part II: Results[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1019-1034.
[13] 靳小龙,穆云飞,贾宏杰,等.考虑配电网重构的区域综合能源系统最优混合潮流计算[J].电力系统自动化,2017,41(01):18-24+56.
[14] 魏震波,黄宇涵,高红均,等.含电转气和热电解耦热电联产机组的区域能源互联网联合经济调度[J].电网技术,2018,42(11):3512-3520.
[15] 徐航,董树锋,何仲潇,等.考虑能量梯级利用的工厂综合能源系统多能协同优化[J].电力系统自动化,2018,42(14):123-130.
[16] 曹又敏.基于多能互补的园区综合能源系统优化调度[D].西安:西安理工大学,2020.
[17] 霍现旭,王靖,蒋菱,等.氢储能系统关键技术及应用综述[J].储能科学与技术,2016,5(02):197-203.
[18] 蔡国伟,孔令国,薛宇,等.风氢耦合发电技术研究综述[J].电力系统自动化,2014,38(21):127-135.
[19] 秦梦珠, 张国月, 齐冬莲. 风电-氢能耦合系统建模及仿真[J].电子技术,2016,45(08):18-23.
[20] 梁芷睿,宋政湘,王建华,等.光氢储混合微电网的优化设计与调度软件开发[J].电力电容器与无功补偿,2018,39(05):172-177.
[21] 蒲雨辰,李奇,陈维荣,等.计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J].电网技术,2019,43(03):918-927.
[22] WU X, QI SX, WANG Z, et al. Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach[J]. Applied Energy, 2019, 253: 113568.
[23] FARZAN F, JAFARI M A, MASIELLO R, et al. Toward optimal day-ahead scheduling and operation control of microgrids under uncertainty[J]. IEEE Transactions on Smart Grid, 2014, 6(2): 499-507.
[24] KOU P, LIANG DL, GAO L. Stochastic energy scheduling in microgrids considering the uncertainties in both supply and demand[J]. IEEE Systems Journal, 2016, 12(3):2589-2600.
[25] TALARI S, YAZDANINEJAD M, HAGHIFAM M R. Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads[J]. IET Generation, Transmission & Distribution, 2015, 9(12): 1498-1509.
[26] LARA J D, OLIVARES D E, CANIZARES C A. Robust energy management of isolated microgrids[J]. IEEE Systems Journal, 2018, 13(1): 680-691.
[27] WANG R, WANG P, XIAO GX. A robust optimization approach for energy generation scheduling in microgrids[J]. Energy Conversion and Management, 2015, 106: 597-607.
[28] 向月,刘俊勇,魏震波,等.考虑可再生能源出力不确定性的微电网能量优化鲁棒模型[J].中国电机工程学报,2014,34(19):3063-3072.
[29] 刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报,2018,38(14):4013-4022+4307.
[30] GU W, WANG ZH, WU Z, et al. An online optimal dispatch schedule for cchp microgrids based on model predictive control[J]. IEEE Transactions on Smart Grid, 2016, 8(5): 2332-2342.
[31] MARIETTA M P, GRAELLS M, GUERRERO J M. A rolling horizon rescheduling strategy for flexible energy in a microgrid[C]//2014 IEEE International Energy Conference (ENERGYCON). IEEE, 2014: 1297-1303.
[32] JIA YW, LYU X, XIE P, et al. A novel retrospect-inspired regime for microgrid real-time energy scheduling with heterogeneous sources[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4614-4625.
[33] MA W J, WANG J, GUPTA V, et al. Distributed energy management for networked microgrids using online ADMM with regret[J]. IEEE Transactions on Smart Grid, 2016, 9(2): 847-856.
[34] LIU N, TAN L, ZHOU LJ, et al. Multi-party energy management of energy hub: A hybrid approach with stackelberg game and blockchain[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 919-928.
[35] FANG SD, ZHAO TY, XU Y, et al. Coordinated chance-constrained optimization of multi-energy microgrid system for balancing operation efficiency and quality-ofservice[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 853-862.
[36] DOU X, WANG J, WANG Z, et al. A dispatching method for integrated energy system based on dynamic time-interval of model predictive control[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 841-852.
[37] 陈磊,徐飞,王晓,等.储热提升风电消纳能力的实施方式及效果分析[J].中国电机工程学报,2015,35(17):4283-4290.
[38] XU XD, JIN XL, JIA HJ, et al. Hierarchical management for integrated community energy systems[J]. Applied Energy, 2015, 160: 231-243.
[39] CLEGG S, MANCARELLA P. Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1234-1244.
[40] CHEN ZX, ZHANG YJ, JI TY, et al. Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(3): 495-508.
[41] 卫志农,张思德,孙国强,等.计及电转气的电–气互联综合能源系统削峰填谷研究[J].中国电机工程学报,2017,37(16):4601-4609+4885.
[42] 吴成辉.基于模型预测控制的微电网群能量优化管理研究[D].广州:华南理工大学,2020.
[43] 陈国发.微电网群双层协调优化运行策略研究[D].兰州:兰州理工大学,2020.
[44] 朱晓荣, 谢婉莹. 计及供热区域热惯性的多微网调度策略[J].现代电力,2020,37(06):566-574.
[45] 武传涛,随权,汪致洵,等.远洋海岛群多态能量流鲁棒调度[J].中国电机工程学报,2020,40(09):2787-2800.
[46] 吕天光,艾芊,孙树敏,等.含多微网的主动配电系统综合优化运行行为分析与建模[J].中国电机工程学报,2016,36(01):122-132.
[47] ZHANG CH, WU JZ, ZHOU Y, et al. Peer-to-peer energy trading in a microgrid[J]. Applied Energy, 2018, 220: 1-12.
[48] LONG C, WU JZ, ZHANG CH, et al. Peer-to-peer energy trading in a community microgrid[C]//2017 IEEE Power & Energy Society General Meeting. IEEE, 2017: 1-5.
[49] LIU N, YU XH, WANG C, et al. Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3569-3583.
[50] SALDARRIAGA-ZULUAGA S D, LÓPEZ-LEZAMA J M, MUÑOZ-GALEANO N. Optimal coordination of over-current relays in microgrids using unsupervised learning techniques[J]. Applied Sciences, 2021, 11(3): 1241.
[51] ALOBAIDI A H, KHODAYAR M E, SHAHIDEHPOUR M. Decentralized energy management for unbalanced networked microgrids with uncertainty[J]. IET Generation, Transmission & Distribution, 2021, 15(13): 1922-1938.
[52] AFRASIABI M, MOHAMMADI M, RASTEGAR M, et al. Stochastic distributed microgrid energy management based on over-relaxed alternative direction method of multipliers[J]. IET Renewable Power Generation, 2020, 14(14): 2639-2648.
[53] 张伟亮,张辉,支娜,等.考虑网络损耗的基于模型预测直流微电网群能量优化策略[J].电力系统自动化,2021,45(13):49-56.
[54] CHEN YL, HAO LX, YIN GW. Distributed energy management of the hybrid AC/DC microgrid with high penetration of distributed energy resources based on ADMM[J]. Complexity, 2021.
[55] 芮涛,李国丽,胡存刚,等.考虑电价机制的微电网群主从博弈优化方法[J].中国电机工程学报,2020,40(08):2535-2546.
[56] WANG ZB, YU XD, MU YF, et al. A distributed peer-to-peer energy transaction method for diversified prosumers in urban community microgrid system[J]. Applied Energy, 2020, 260: 114327.
[57] AN J, LEE M, YEOM S, et al. Determining the peer-to-peer electricity trading price and strategy for energy prosumers and consumers within a microgrid[J]. Applied Energy, 2020, 261: 114335.
[58] 汪超群,韦化,吴思缘,等.七种最优潮流分解协调算法的性能比较[J].电力系统自动化,2016,40(06):49-57.
[59] LI Q, LIAO YX, WU KM, et al. Parallel and distributed optimization method with constraint decomposition for energy management of microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4627-4640.
[60] 曾智基.多主体微网群的协同优化调度研究[D].广州:华南理工大学,2019.
[61] MOHAMED M A, ABDULLAH H M, AL-SUMAITI A S, et al. Towards energy management negotiation between distributed AC/DC networks[J]. IEEE Access, 2020, 8: 215438-215456.
[62] RAJAEI A, FATTAHEIAN-DEHKORDI S, FOTUHI-FIRUZABAD M, et al. Decentralized transactive energy management of multi-microgrid distribution systems based on ADMM[J]. International Journal of Electrical Power & Energy Systems, 2021, 132: 107126.
[63] XU D, ZHOU B, LIU N, et al. Peer-to-peer multienergy and communication resource trading for interconnected microgrids[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2522-2533.
[64] 艾芊,郝然.多能互补集成优化能源系统关键技术及挑战[J].电力系统自动化,2018,42(04):2-10+46.
[65] 蒋超凡,艾欣.计及多能耦合机组不确定性的综合能源系统运行优化模型研究[J].电网技术,2019,43(08):2843-2854.
[66] 郭创新,王惠如,张伊宁,等.面向区域能源互联网的“源-网-荷”协同规划综述[J].电网技术,2019,43(09):3071-3080.
[67] 尚德华.基于不同典型场景的智能微电网系统集成与应用[D].保定:华北电力大学,2018.
[68] 刘畅,卓建坤,赵东明,等.利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J].中国电机工程学报,2020,40(01):1-18+369.
[69] CSIRO roadmap finds hydrogen industry set for scale-up[EB/OL].
[2018-08-23]. https://www.csiro.au/en/News/News-releases/2018/Roadmap-finds-HydrogenIndustry-set-for-scale-up.
[70] 张红,袁铁江,谭捷,等.面向统一能源系统的氢能规划框架[J].中国电机工程学报,2022,42(01):83-94.
[71] 俞红梅,衣宝廉.电解制氢与氢储能[J].中国工程科学,2018,20(03):58-65.
[72] YUN JY, YAN Z, ZHOU Y, et al. Multi-time collaborative restoration for integrated electrical-gas distribution system based on rolling optimization[J]. CSEE Journal of Power and Energy Systems, 2020.
[73] REN JY, GU W, WANG Y, et al. Multi-time scale active and reactive power coordinated optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2018, 38(05): 1600.
[74] RAZALI N M M, HASHIM A H. Backward reduction application for minimizing wind power scenarios in stochastic programming[C]//2010 4th International Power Engineering and Optimization Conference (PEOCO). IEEE, 2010: 430-434.
[75] LYU C, JIA YW, XU Z. Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles[J]. Applied Energy, 2021, 299: 117243.
[76] 邓明辉.电力需求侧响应的综合能源系统调度方法及其供能综合评价指标研究[D].长沙:长沙理工大学,2018.
[77] AZIM M I, TUSHAR W, SAHA T K. Coalition graph game-based P2P energy trading with local voltage management[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4389-4402.
[78] XIE P, JIA YW, CHEN HK, et al. Mixed-stage energy management for decentralized microgrid cluster based on enhanced tube model predictive control[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3780-3792.
[79] WANG H, JIA YW, LAI C S, et al. Two-stage minimax regret-based self-scheduling strategy for virtual power plants[C]//2021 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2021: 1-5.
[80] SONG C, YOON S, PAVLOVIC V. Fast ADMM algorithm for distributed optimization with adaptive penalty[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2016, 30(1).
[81] KARGARIAN A, MEHRTASH M, FALAHATI B. Decentralized implementation of unit commitment with analytical target cascading: A parallel approach[J]. IEEE Transactions on Power Systems, 2017, 33(4): 3981-3993.
[82] LOFBERG J. YALMIP: A toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508). IEEE, 2004: 284-289.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TM73
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335876
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
史梦鸽. 计及P2P能源交易的综合能源系统优化调度与经济运行[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930173-史梦鸽-电子与电气工程(3062KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史梦鸽]的文章
百度学术
百度学术中相似的文章
[史梦鸽]的文章
必应学术
必应学术中相似的文章
[史梦鸽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。