中文版 | English
题名

基于激光织构化界面设计的全固态锂金属电池性能研究

姓名
姓名拼音
LU Yongguang
学号
11930616
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
徐少林
导师单位
机械与能源工程系
论文答辩日期
2022-05-07
论文提交日期
2022-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

高能量密度和高安全性能的全固态锂金属电池是未来锂电池重点发展方向之一,对我国的能源转型至关重要。部分固态电解质的室温离子导电率已经能够满足实用化需求,但固态电解质与电极材料间较大的界面阻抗是限制全固态电池真正实现商业化应用的最大瓶颈。针对全固态电池界面问题,本文采用皮秒加工技术构建三维固态电解质/电极界面结构,为锂离子提供更多反应位点及交换通道,降低全固态电池界面阻抗,提高电池循环稳定性以及倍率性能。具体研究内容及结论如下:

1)根据电化学模型结合有限元仿真技术,分析不同电解质/电极界面结构下电流密度及应力分布情况。仿真结果表明V字型界面结构能够有效降低电流集中效应。

2)在仿真分析基础上,利用皮秒加工技术制备了具有周期性锥孔结构的3D-LAGPLi1.5Al0.5Ge1.5PO43)固态电解质。以3D-LAGP构建的Li/3D-LAGP/Li对称电池的界面阻抗降低了54%,并且在0.05 mA cm-2电流密度下可以稳定循环超过700 h。以LiFePO4为正极的全电池的界面阻抗也下降了52%,同时循环与倍率性能也得到了显著的提升。

3)通过球磨法制备了金属锂化学相容性更好的LAGP-PEO复合固态电解质,当LAGP质量分数为40%时,复合电解质室温离子导电率达到7.4×10-6 S cm-1。结合皮秒激光加工技术构建具有三维界面结构的Li/40%LAGP-PEO/3D-LFP全固态锂金属电池体系。该体系的界面阻抗从350 Ω cm-2降低至162 Ω cm-2,并且在0.1 C电流密度下循环充放电100次后容量保持率高达81.5%,同时也表现出了更好的倍率性能。

本文基于无机陶瓷与复合固态电解质体系构建的具有三维界面结构的锂金属电池在界面阻抗、循环稳定性以及倍率性能等方面都有显著的提升。不同于常见的无规则三维界面结构,本文基于有限元仿真分析以及精密加工技术构建的规则界面结构能够减轻电流集中效应以及提高界面结构稳定性,为三维界面结构的研究提供了一种全新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] ZHOU W, ZHANG M, KONG X, et al. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries[J]. Adv Sci, 2021, 8(13): 2004490.
[2] OMID P, KIMMO K. Energy storage systems in modern grids—Matrix of technologies and applications[J]. J Energy Storage, 2016, 6(5):248-259.
[3] NEHA C, NEELAM B, SHAILENDA S. Recent advances in non-flammable electrolytes for safer lithium-ion batteries[J]. Batteries, 2019, 5(1):19-31.
[4] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem Rev, 2017, 117(15):10403-10473.
[5] MONROE C, NEWMAN J, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. J Electrochem Soc, 2005. 152(2):A396-A404.
[6] SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Sci China Chem, 2017, 000(012):1508-1526.
[7] XIA S, WU, X, ZHANG, Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4):753-785.
[8] ZHANG Z, CHEN S, YANG J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Appl Mater, 2017, 10(3):2556-2565.
[9] ZHANG Z, ZHAO Y, CHEN S, et al. Advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life[J]. J Mater Chem A, 2017, 5(32):16984-16993.
[10] ZHENG F, KOTOBUKI M, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. J Power Sources, 2018, 389(15):198-213.
[11] DAHEE J, JOONAM P, et al, Structure-controlled Li metal electrodes for post-li-ion batteries: recent progress and perspectives[J]. Adv Mater Interface, 2020, 7(8): 113-130.
[12] GORIPARTI S, MIELE E, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. J Power Sources, 2014, 257:421-443.
[13] FU K K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environ Sci, 2017, 10(7):1568-1575.
[14] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. J Power Sources, 1999, 81:925–929.
[15] CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys Rev A, 1990, 42(12):7355-7367.
[16] SOUSA R, SOUSA J A, RIBEIROJF, et al. All-solid-state batteries: an overview for bio applications[C]. 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). Braga:IEEE. 2013: 4673-4859
[17] SUNDARAMAHALINGAM K, VAHINI M, et al. Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes[J]. Polym Bull, 2019,76(1):5577-5602.
[18] GOODENOUGH J B, HONG H Y P, KAFALAS J A, Fast Na+-ion transport in skeleton structures. Mater Res Bull 1976, 11(2):203-220.
[19] REN Y, CHEN K, et al. Oxide electrolytes for lithium batteries[J]. J Am Ceram, 2015, 98(12):3603-3623.
[20] ZHENG F, MASASHI K, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. J Power Sources. 2018, 398:198-213.
[21] MEESALA Y, JENA A, CHANG H, LIU R S, Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries[J]. ACS Energy Lett 2017, 2(12):2734-2751.
[22] KWATEK K, NOWINSKI J L, Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid[J]. Solid State Ion, 2017, 302: 54-60.
[23] LIU M, LI X, WANG X, et al. Facile synthesis and electrochemical properties of high lithium ionic conductivity Li1.7Al0.3Ti1.7Si0.4P2.6O12 ceramic solid electrolyte[J]. J. Alloys Compd, 2018, 756(5):103-110.
[24] ILLBEIGI M, FAZLALI A et al., Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass–ceramics[J]. Solid State Ion, 2016,289:180-187.
[25] KAWAI H, KUWANO J. Lithium ion conductivity of a-site deficient perovskite solid-solution La0.67-xLi3xTiO3[J]. J Electrochem Soc, 1994, 141(7):L78-L79.
[26] YOSHIYUKI I, CHEN L et al., Candidate compounds with perovskite structure for high lithium ionic conductivity[J]. Solid State Ion, 1994, 70:196-202.
[27] CHEN C H, XIE S, et al., Stable lithium-ion conducting perovskite lithium–strontium–tantalum-zirconium-oxide system[J]. Solid State Ion, 2004, 167:263-272.
[28] RYOJI I, KEISUKE K, et al. Synthesis and lithium-ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering[J]. Solid State Ion, 2014, 261:95-99.
[29] CHEN C H, XIE S, et al. Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system[J]. Solid State Ion, 2004, 167 (3-4):263-272.
[30] YU R, DU Q X, ZOU B K, et al. Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries[J]. J Power Sources, 2016, 306:623-629.
[31] HUANG B, ZHONG S, LUO J, HUANG Z et al. Highly dense perovskite electrolyte with a high Li+ conductivity for Li-ion batteries[J]. J Power Sources, 2019, 429:75-79.
[32] CHEN F, LI J, et al. Origin of the phase transition in lithium garnets[J]. J Phys Chem C, 2018, 122:1963-1972.
[33] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem Int Edit, 2007, 46 (41):7778-7781.
[34] AWAKA J, KIJIMA N, HAYAKAWA H et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. J Solid State Chem, 2009, 182 (8):2046-2052.
[35] GEIGER A, ALEKSEEEV E, LAZIC B, et al. Cheminform abstract: crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Cerm Int, 2011, 42(13):1089-1097.
[36] ZHUANG L B, HUANG X, LU Y, et al. Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics[J]. Cerm Int, 2021, 47(16):22768-22775.
[37] LU Y, HUANG X, RUAN Y D, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. J Mater Chem A, 2018, 6(39):18853-18858.
[38] INADA R, TAKEDA A, YAMAZAKI Y, et al. Effect of postannealing on the properties of a ta-doped li7la3zr2o12 solid electrolyte degraded by Li dendrite penetration[J]. ACS Appl. Energy Mater, 2021, 3(12):12517-12524.
[39] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X=0-2)[J]. J Power Sources, 2011, 196(6):3342-3345.
[40] SCHWANZ D K, VILLA A BALASUBRAMANIAN, et al. Bi aliovalent substitution in Li7La3Zr2O12 garnets: structural and ionic conductivity effects[J]. Aip Adv, 2020,10(3):035204.
[41] YAN B, KOTOBUKI M, LIU J. et al. Ruthenium doped cubic-garnet structured solid electrolyte Li7La3Zr2-xRuxO12[J]. Mater Tech, 2016, 31(11):623-627.
[42] YANG T, LI Y, WU W, et al. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic[J]. Ceram Int, 2017:1538-1544.
[43] LI Y, ZHENG W, YANG C, et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Elec Acta, 2015, 180:37-42.
[44] SEO J H, NAKAYA H, TAKEUCHI Y,Broad et al. Temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes[J]. J Eur Ceram Soc, 2020, 40(15): 6241-6248.
[45] SONG SF, DENIS, et al. High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ga ions[J]. Mat & Design, 2016, 93(5):232-237.
[46] MURUGAN R, RAMAKUMAR S, JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Elec Comm, 2011, 13(12):1373-1375.
[47] NARAYANAN S, EPP V, WILKENING M, et al. Macroscopic and microscopic Li+ transport parameters in cubic garnet-type "Li6.5La2.5Ba0.5ZrTaO12 " as probed by impedance spectroscopy and NMR[J]. RSC Adv, 2012, 2:2553-2561.
[48] WANG ZY, SANTHANAGOPALAN D, et al. In situ stem-eels observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Lett, 2016, 16: 3760-3767.
[49] SU Y, FALGENHAUER J, et al. Electrochemical properties and optical transmission of high Li+ conducting LiSiPON electrolyte films[J]. Bacsic solid state phy, 2016, 254:1600088-1600098.
[50] GOODENOUGH B. Review lecture: fast ionic conduction in solids[J]. Proc Math Phys Eng Sci, 1984, 398.
[51] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2020,33(6):2000751.
[52] TACHEZ M, MALUGANI J, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J]. Solid State Ion, 1984, 14:181–185.
[53] PHUC N H H, MORIKAWA K, MITSUHIRO T, et al. A synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries[J]. Ion, 2017,23(8):2061-2067.
[54] BAEK SW, HONMA I, KIM J, RANGAPPA D. Solidified inorganic-organic hybrid electrolyte for all solid-state flexible lithium battery[J]. J Power Sources, 2017, 343:22–29.
[55] LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J Am Chem Soc, 2013, 135:975-978.
[56] TERAGAWA S, ASO K, TADANAGA K, et al. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries[J]. J Mater Chem, A 2014, 2:5095–5099.
[57] YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ion, 2007, 178:1163–1167.
[58] SCKOWADA Y, TATSUMISAGO M, MINAMI T, et al. Electronic state of sulfide-based lithium ion conducting glasses[J]. J Non Cryst Solids, 2008, 354:360–364.
[59] WU QH, CHEN M, CHEN KY, et al. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors[J]. J Mater Sci, 2016, 51:1572–1580.
[60] KAMAYA N, HOMMA K, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9):682-686.
[61] HUSSOUN J, VERRELLI R, et al. A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. J Power Sources, 2013,229:117-122.
[62] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12:an affordable lithium superionic conductor[J]. J Am Chem Soc, 2013, 135:15694-15697.
[63] ZHOU P F, WANG J B, et al. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure[J]. Chem Comm, 2016, 52(36):6091-6094.
[64] CHEN B Y, HUANG H, WANG Y, et al. In situ polymerized polydopamine nanoparticles as enhanced polymer composite electrolyte for all-solid-state lithium-ion batteries[J]. ChemElectroChem, 2021,9(3): e202101277.
[65] CHEN S L, CHE H Y, FENG FAN, et al. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries[J]. ACS Appl Mater, 2019, 11(46):43056-43065.
[66] JIA W, LI Z, WU Z, et al. Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte[J]. Solid State Ion., 2018, 315: 7-13.
[67] ZHANG M Y, LI M X, CHANG Z, et al. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium8-ion battery[J]. Electrochimica Acta, 2017, 245:752-759.
[68] WEI, XIAO, WANG Z Y, JIANG Y et al. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium-ion batteries[J]. J Power Sources, 2018, 382:128-134.
[69] YAO R H, YU H B, et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Poly Chem, 2019, 7:522-539.
[70] CLERICUZIO M, PARKER W, SOPRANI M, et al. Ionic diffusivity and conductivity of plasticized polymer electrolytes: PMFG-NMR and complex impedance studies [J]. Solid State Ion., 1995, 82(3-4):179-92.
[71] SLOOP S E, LERNER M M, et al. Cross-linking poly(ethylene oxide) and poly[oxymethylene-oligo(oxyethylene)] with ultraviolet radiation[J]. J Appl Polym Sci, 2010, 53:1563-1572.
[72] MATOBA Y IKEDA Y, KOHJIYA S. Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s[J]. Solid State Ion, 2002, 147:403-409.
[73] ZHANG X W, DAIGLE J C, ZAGHIB K. Comprehensive review of polymer architecture for all-solid-state lithium rechargeable batteries[J]. Mater, 2020, 13(11):2488.
[74] HAWKER CJ, CHU F, et al. Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials[J]. Macromolecules 1996, 29:3831-3838.
[75] WANG H, LI X, et al. Preparation of P(AN-MMA)/SiO2 hybrid solid electrolytes[J]. J Appl Polym Sci, 2010, 114:1365-1369.
[76] XU L, LI J, SHUAI H, et al. Recent advances of composite electrolytes for solid-state Li batteries[J], J Ener Chem, 2022, 67:524-548.
[77] ZHAO Y, WU C, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources, 2016, 301:47-53.
[78] Lin X, SALARI M, GRINSTAFF M, et al., High temperature electrical energy storage: advances, challenges, and frontiers. Chem Soc Rev, 2016, 45(21):5848-5887.
[79] KATO, A, SUYAMA M, HOTEHAMA C et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. J Electrochem Soc, 2018, 165(9):A1950-A1954.
[80] Choudhury S, Archer L A, Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Adv Electron Mater, 2016, 2(2):1500246.
[81] HE, Y, LU C Y, LIU S, et al. Interfacial incompatibility and internal stresses in all‐solid‐state lithium-ion batteries[J]. Adv Energy Mater, 2019, 9(36):1901810.
[82] ZHU, Y Z, HE X F, MO Y F, et al. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermo-dynamic analyses based on first-principles calculations[J]. ACS Appl Mater Inter 2015,7:23685-23693.
[83] HARTMANN P, LEICHTWEISS T, BUSCHE M R, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes[J]. J Phys Chem C, 2013, 117(41):21064-21074.
[84] LIU Y, LI C, LI B, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Adv Energy Mater, 2018, 8(16):1702374.
[85] WEST W C, WHITACRE J F, LIM J R. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films[J]. J Power Sources, 2004, 126(1/2):134-138.
[86] JADHAV H S, KALUBARME R S, JADHAV A H, et al. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries[J]. Electrochim Acta, 2016, 199:126-132.
[87] KIM Y, VEITH G M, NANDA J, et al. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating[J]. Electrochim Acta, 2011, 56(19):6573-6580.
[88] KATO T, HAMANAKA T, Yamamoto K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260(15):292-298.
[89] WEI T, TANG D, SONG R, et al. Lithium silicide surface enrichment: a solution to lithium metal battery[J]. Adv Mater, 2018, 30(34):180175.
[90] Wang L, Zhang L, Wang Q, et al. Long lifespan lithium metal anodes enabled by Al2 O3 sputter coating[J]. Energy Stor. Mater., 2018 10:126-132.
[91] PARK K, GOODENOUGH J B. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N[J]. Adv Energy Mater, 2017, 7(19):1700732.
[92] LI Y, SUN Y, PEI A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. Acs Cent, 2018, 4(1):97-104.
[93] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state li-metal batteries operated at 40 ºC[J]. Nano Lett, 2018, 18(11):7414-7418.
[94] FU K, GONG Y, LIU B, et al. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Adv, 2017, 3(4):e1601659-e1601668. 
[95] FU K K, GONG Y, FU Z, et al. Transient behavior of the metal interface in lithium metal–garnet batteries[J]. Angew Chem, 2017,129:15138-15143.
[96] YADA C, IRIYAMA Y, JEONG S K. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. J. Power Sources, 2005, 146(1/2):559-564.
[97] BOUWMAN P J, BOUKAMP B A, BOUWMEESTER H J M, et al. Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes[J]. J Electrochem Soc, 2002, 149(6):A699-A709.
[98] FURUSAWA S I, TABUCHI H, SUGIYAMA T, et al. Ionic conductivity of amorphous lithium lanthanum titanate thin film[J]. Solid State Ion, 2005, 176(5-6):553-558.
[99] WOO J H, TRAVIS J J, GEORGE S M, et al. Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries[J]. J Electrochem Soc, 2014, 162(3):A344-A349.
[100] HAN X H, GONG Y H, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2017, 16(5):572-579.
[101] DUAN H., CHEN W P, FAN M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate- temperature conversion chemistry[J]. Angew. Chem. Int. Ed. 2020, 59:12069-12075.
[102] OHTA N., TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale inter-facial modification[J]. Adv Mater, 2006,18:2226-2229.
[103] KOERVER R, AYGÜN I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chem Mater, 2017, 29:5574-5582.
[104] BROEK J, AFYON S, RUPP J. Interface-engineered all-solid-state li-ion batteries based on garnet-type fast Li+ conductors [J]. Adv Energy Mater, 2016, 6(19):1-11.
[105] FU K K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environ, 2017, 10(7):1568-1575.
[106] XU, S M, ZHANG L, et al. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture[J]. Energy Storage Mater 2018,15:458-464.
[107] HAN SY, LEWIS J A, SHETTY P P, et al. Porous metals from chemical dealloying for solid-state battery anodes[J]. Chem Mater, 2020,32:2461-2469.
[108] XIA Q, SUN S, et al. Self-standing 3d cathodes for all-solid-state thin film lithium batteries with improved interface kinetics[J]. Small 2018, 14:1804149-1804158.
[109] LU L L, GE J, YANG J N, et al. Free-standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Lett, 2016, 16(7):4431-4439.
[110] KE X, CHENG Y, LIU J, et al. Hierarchically bicontinuous porous copper as advanced 3d skeleton for stable lithium storage[J]. Acs Appl Mater Interfaces, 2018, 10(16):13552-13561.
[111] RAMADESIGAN V, NORTHROP P W, et al. Subramanian, modeling and simulation of lithium-ion batteries from a systems engineering perspective[J], J Electrochem Soc, 2012, 159(3):R31-R45.
[112] A. SEAMAN, T.S. DAO, J. MCPHEE, A survey of mathematics-based equivalent- circuit and electrochemical battery models for hybrid and electric vehicle simulation[J], J. Power Sources, 2014,256:410-423.
[113] JOKAR A, RAJABLOO, B, et al. Review of simplified pseudo-two-dimensional models of lithium-ion batteries[J], J. Power Sources, 2016,327:44-45.
[114] SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology, J. Power Sources, 1999, 80 (1):293-300.
[115] DOYLE M, FULLER T F, NEWMAN J, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J], Electrochem Soc 1993,140:(6): 1526-1533.
[116] DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium-ion cells[J], J. Electrochem. Soc. 1996,143(6):1890-1903.
[117] SANTHANAGOPALAN S, GUO Q, et al., Review of models for predicting the cycling performance of lithium-ion batteries[J], J Power Sources 2006,156(2):620-628.
[118] 庞辉. 基于电化学模型的锂离子电池多尺度 建模及其简化方法[J]. 物理学报,2017, 66(23):238801.
[119] MIEHE C, DAL H, et al. A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles[J]. Int J Numer Methods Eng, 2015, 106(9):683-711.
[120] XIE Y, QIU M, GAO X F, et al. Phase field modeling of silicon nanowire based lithium ion battery composite electrode[J]. Electrochim Acta, 2015, 186(20):542-551.
[121] TIPPENS J, AFSHAR A, JOHN A, et al. Visualizing chemo-mechanical degradation of a solid-state battery electrolyte[J]. ACS Energy Lett, 2019, 4:1475-1483.
[122] KOERVER R, AYGUN I, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chem Mater 2017, 29(13):5574-5582.
[123] XU R, LIU F, YE Y S, et al. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3d-micropatterned garnet[J]. Adv Mater, 2021, 33(49):2104009.
[124] BRISSOT C, ROSSO M, CHAZALVIEL J-N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. J Power Sources, 1999, 81-82:925-929. 
[125] CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12):7355-7367.
[126] JANEK J, ZEIER W G, et al. A solid future for battery development[J], Nat Energy 2016, 1:16141.
[127] MURAMATSU H, HAYASHI A, et al., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere[J], Solid State Ion, 2011, 182:116-119.
[128] LIN Z, LI J, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4, Energy Environ. Sci. 2014, 7:1053-1058.
[129] S.JADHAV H, CHO MS, et al. Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics[J]. J. Power Sources, 2013, 241: 502-508.
[130] Shimonishi Y, Zhang T, et al., A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions[J]. J Power Sources, 2010, 195(18):6187-6191.
[131] JOYKUMAR S, THOKCHOM, et al. Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic[J]. J Electrochem Soc, 2008, 155:A915-A922.
[132] LEO C J, CHOWDARIB R, et al. Lithium conducting glass ceramic with NASICON structure[J]. Mater. Res. Bull., 2002, 37(8):1419-1430.
[133] WILHELM P, PETRONELA G. Femtosecond laser processing of thick film cathodes and its impact on lithium-ion diffusion kinetics[J]. Appl Sci, 2019, 9(17):3588-3596.
[134] TONG H, LIU J, YANG Y F, et al. Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering [J]. J Power Sources 2022, 521(15):230964–230970.
[135] 余涛, 韩喻, 王珲,等. Li1.5Al0.5Ge1.5(PO4)3基固体复合电解质的制备及锂离子导电行为[J]. 高等学校化学学报, 2016, 34(2):306-315.
[136] MARZANTOWICZ M, DYGAS J R, et al. Crystalline phases, morphology and conductivity of PEO:LiTFSI electrolytes in the eutectic region[J]. J Power Sources, 2006, 159(1):420-428.
[137] APPETECCHI G B, ZANE D, SCROSATI B. Novel solid polymer electrolytes with single lithium-ion transport[J]. Electroanal Chem, 2004, 151(9):A1369-A1374.
[138] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Lett, 2017, 17(5):3182-3187.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TN249
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335878
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
卢勇光. 基于激光织构化界面设计的全固态锂金属电池性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930616-卢勇光-机械与能源工程(5899KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[卢勇光]的文章
百度学术
百度学术中相似的文章
[卢勇光]的文章
必应学术
必应学术中相似的文章
[卢勇光]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。