[1] MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85.
[2] HIROHATA A, YAMADA K, NAKATANI Y, et al. Review on spintronics: Principles and device applications[J]. Journal of Magnetism and Magnetic Materials, 2020: 166711.
[3] BINASCH G, GRÜNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Physical review B, 1989, 39(7): 4828.
[4] BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices[J]. Physical review letters, 1988, 61(21): 2472.
[5] LINDER J, ROBINSON J W A. Superconducting spintronics[J]. Nature Physics, 2015, 11(4): 307-315.
[6] BELIN-FERRÉ E. Mechanical Properties of Complex Intermetallics[M]. World Scientific, 2010: 423.
[7] THOMSON W. XIX. On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron[J]. Proceedings of the Royal Society of London, 1857 (8): 546-550.
[8] VAN ELST H C. The anisotropy in the magneto-resistance of some nickel alloys[J]. Physica, 1959, 25(1-6): 708-720.
[9] MEADEN G T. Conduction electron scattering and the resistance of the magnetic elements[J]. Contemporary Physics, 1971, 12(4): 313-337.
[10] MCGUIRE T, POTTER R L. Anisotropic magnetoresistance in ferromagnetic 3d alloys[J]. IEEE Transactions on Magnetics, 1975, 11(4): 1018-1038.
[11] KOKADO S, TSUNODA M. Anisotropic magnetoresistance effect: general expression of AMR ratio and intuitive explanation for sign of AMR ratio[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 750: 978-982.
[12] BINASCH G, GRÜNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Physical review B, 1989, 39(7): 4828.
[13] CAMLEY R E, BARNAŚ J. Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling[J]. Physical review letters, 1989, 63(6): 664.
[14] DIENY B, VEDYAYEV A, RYZHANOVA N. Comparison of semi-classical and real-space quantum theories of giant magnetoresistance[J]. Journal of magnetism and magnetic materials, 1993, 121(1-3): 366-370.
[15] JOHNSON B L, CAMLEY R E. Theory of giant magnetoresistance effects in Fe/Cr multilayers: Spin-dependent scattering from impurities[J]. Physical Review B, 1991, 44(18): 9997.
[16] ENNEN I, KAPPE D, REMPEL T, et al. Giant magnetoresistance: basic concepts, microstructure, magnetic interactions and applications[J]. Sensors, 2016, 16(6): 904.
[17] JULLIERE M. Tunneling between ferromagnetic films[J]. Physics letters A, 1975, 54(3): 225-226.
[18] HALL E H. On a new action of the magnet on electric currents[J]. American Journal of Mathematics, 1879, 2(3): 287-292.
[19] HALL E H. XVIII. On the “Rotational Coefficient” in nickel and cobalt[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(74): 157-172.
[20] SMITH A W, SEARS R W. The Hall effect in Permalloy[J]. Physical Review, 1929, 34(11): 1466.
[21] 于广华, 彭文林, 张静言. 反常霍尔效应及其应用研究进展[J]. 金属功能材料, 2016, 23(3):10.
[22] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
[23] KARPLUS R, LUTTINGER J M. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5): 1154.
[24] LUTTINGER J M. Theory of the Hall effect in ferromagnetic substances[J]. Physical Review, 1958, 112(3): 739.
[25] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Reviews of modern physics, 2010, 82(3): 1959.
[26] SMIT J. The spontaneous Hall effect in ferromagnetics I[J]. Physica, 1955, 21(6-10): 877-887.
[27] BERGER L. Side-jump mechanism for the Hall effect of ferromagnets[J]. Physical Review B, 1970, 2(11): 4559.
[28] SETHU K K V. Spin orbit torques in magnetic materials[D]. Master’s thesis, Katholieke Universiteit Leuven, Belgium, 2017.
[29] RAMASWAMY R, LEE J M, CAI K, et al. Recent advances in spin-orbit torques: Moving towards device applications[J]. Applied Physics Reviews, 2018, 5(3): 031107.
[30] MIHAI MIRON I, GAUDIN G, AUFFRET S, ET AL. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer[J]. Nature materials, 2010, 9(3): 230-234.
[31] LIU L, PAI C F, LI Y, ET AL. Spin-torque switching with the giant spin Hall effect of tantalum[J]. Science, 2012, 336(6081): 555-558.
[32] D'YAKONOV M I, PEREL V I. Possibility of orienting electron spins with current[J]. ZhETF Pisma Redaktsiiu, 1971, 13: 657.
[33] HIRSCH J E. Spin hall effect[J]. Physical review letters, 1999, 83(9): 1834.
[34] EDELSTEIN V M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems[J]. Solid State Communications, 1990, 73(3): 233-235.
[35] BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity[J]. Physical Review, 1957, 106(1): 162.
[36] MATTHIAS B T, SUHL H, CORENZWIT E. Spin exchange in superconductors[J]. Physical Review Letters, 1958, 1(3): 92.
[37] KAMERLINGH ONNES H. The resistance of pure mercury at helium temperatures[J]. Commun. Phys. Lab. Univ. Leiden, b, 1911, 120.
[38] MEISSNER W, OCHSENFELD R. Ein neuer effekt bei eintritt der supraleitfähigkeit[J]. Naturwissenschaften, 1933, 21(44): 787-788.
[39] YAMAKI K, BAMBA Y, IRIE A. Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8−δ by partial melting[J]. Japanese Journal of Applied Physics, 2018, 57(3): 033101.
[40] FISCHER Ø, ISHIKAWA M, PELIZZONE M, et al. Exchange and crystalline field in metallic compounds. coexistence of superconductivity and long range magnetic order[J]. Le Journal de Physique Colloques, 1979, 40(C5): C5-89-C5-94.
[41] MACHIDA K, YOUNGNER D. Theory of superconductivity in ternary rare-earth compounds. II[J]. J. Low Temp. Phys.;(United States), 1979, 35(5).
[42] EISAKI H, TAKAGI H, CAVA R J, et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides[J]. Physical Review B, 1994, 50(1): 647.
[43] BERNHARD C, TALLON J L, NIEDERMAYER C, et al. Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization[J]. Physical Review B, 1999, 59(21): 14099.
[44] CHMAISSEM O, JORGENSEN J D, SHAKED H, et al. Crystal and magnetic structure of ferromagnetic superconducting RuSr2GdCu2O8[J]. Physical Review B, 2000, 61(9): 6401.
[45] BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of modern physics, 2005, 77(3): 935.
[46] MEISSNER H. Superconductivity of contacts with interposed barriers[J]. Physical Review, 1960, 117(3): 672.
[47] RADOVIĆ Z, DOBROSAVLJEVIĆ-GRUJIĆ L, BUZDIN A I, et al. Upper critical fields of superconductor-ferromagnet multilayers[J]. Physical Review B, 1988, 38(4): 2388.
[48] XIA J, SHELUKHIN V, KARPOVSKI M, et al. Inverse proximity effect in superconductor-ferromagnet bilayer structures[J]. Physical review letters, 2009, 102(8): 087004.
[49] PARASKEVOPOULOS D, MESERVEY R, TEDROW P M. Spin polarization of electrons tunneling from 3d ferromagnetic metals and alloys[J]. Physical Review B, 1977, 16(11): 4907.
[50] TEDROW P M, TKACZYK J E, KUMAR A. Spin-polarized electron tunneling study of an artificially layered superconductor with internal magnetic field: EuO-Al[J]. Physical review letters, 1986, 56(16): 1746.
[51] TAKAHASHI S, IMAMURA H, MAEKAWA S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions[J]. Physical review letters, 1999, 82(19): 3911.
[52] FULDE P, FERRELL R A. Superconductivity in a strong spin-exchange field[J]. Physical Review, 1964, 135(3A): A550.
[53] LARKIN A I, OVCHINNIKOV Y N. Nonuniform state of superconductors[J]. Soviet Physics-JETP, 1965, 20(3): 762-762.
[54] PREPELITSA A, ZDRAVKOV V, MOLCHANOVA E, et al. Nonuniform superconducting state in superconductor/ferromagnet nanoscale layered system[J]. Moldavian Journal of the Physical Sciences, 2006, 5(1): 71-77.
[55] ESCHRIG M. Spin-polarized supercurrents for spintronics[J]. Phys. Today, 2011, 64(1): 43.
[56] ESCHRIG M. Spin-polarized supercurrents for spintronics: a review of current progress[J]. Reports on Progress in physics. Physical Society (Great Britain), 2015, 78(10): 104501-104501.
[57] ANDREEV A F. The thermal conductivity of the intermediate state in superconductors[J]. Журнал экспериментальной и теоретической физики, 1964, 46(5): 1823-1828.
[58] SOULEN R J, BYERS J M, OSOFSKY M S, et al. Measuring the spin polarization of a metal with a superconducting point contact[J]. science, 1998, 282(5386): 85-88.
[59] TEDROW P M, MESERVEY R. Spin-dependent tunneling into ferromagnetic nickel[J]. Physical Review Letters, 1971, 26(4): 192.
[60] MOODERA J S, MIAO G X, SANTOS T S. Frontiers in spin-polarized tunneling[J]. Physics Today, 2010, 63(4): 46.
[61] MESERVEY R, TEDROW P M. Spin polarization of tunneling electrons from films of Fe, Co, Ni, and Gd[J]. Solid State Communications, 1972, 11(2): 333-336.
[62] TEDROW P M, MESERVEY R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd[J]. Physical Review B, 1973, 7(1): 318.
[63] BERGERET F S, VOLKOV A F, EFETOV K B. Long-range proximity effects in superconductor-ferromagnet structures[J]. Physical review letters, 2001, 86(18): 4096.
[64] KEIZER R S, GOENNENWEIN S T B, KLAPWIJK T M, et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2[J]. Nature, 2006, 439(7078): 825-827.
[65] LINDER J, ROBINSON J W A. Superconducting spintronics[J]. Nature Physics, 2015, 11(4): 307-315.
[66] ESCHRIG M. Spin-polarized supercurrents for spintronics: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(10): 104501.
[67] ESCHRIG M, KOPU J, CUEVAS J C, et al. Theory of half-metal/superconductor heterostructures[J]. Physical review letters, 2003, 90(13): 137003.
[68] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666-669.
[69] MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22): 1133.
[70] HOHENBERG P C. Existence of long-range order in one and two dimensions[J]. Physical Review, 1967, 158(2): 383.
[71] COLEMAN S. There are no Goldstone bosons in two dimensions[J]. Communications in Mathematical Physics, 1973, 31(4): 259-264.
[72] YAZYEV O V, HELM L. Defect-induced magnetism in graphene[J]. Physical Review B, 2007, 75(12): 125408.
[73] KHALID M, ZIESE M, SETZER A, et al. Defect-induced magnetic order in pure ZnO films[J]. Physical Review B, 2009, 80(3): 035331.
[74] ESQUINAZI P, HERGERT W, SPEMANN D, et al. Defect-induced magnetism in solids[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4668-4674.
[75] ANDRIOTIS A N, MENON M. Defect-induced magnetism: Codoping and a prescription for enhanced magnetism[J]. Physical Review B, 2013, 87(15): 155309.
[76] MAOZ B M, TIROSH E, SADAN M B, et al. Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO[J]. Physical Review B, 2011, 83(16): 161201.
[77] WANG H, EYERT V, SCHWINGENSCHLÖGL U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3[J]. Journal of Physics: Condensed Matter, 2011, 23(11): 116003.
[78] SIVADAS N, DANIELS M W, SWENDSEN R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers[J]. Physical Review B, 2015, 91(23): 235425.
[79] LIU J, SUN Q, KAWAZOE Y, et al. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers[J]. Physical Chemistry Chemical Physics, 2016, 18(13): 8777-8784.
[80] XIANG H, XU B, XIA Y, et al. Tunable electronic structures in MPX3 (M= Zn, Cd; X= S, Se) monolayers by strain engineering[J]. RSC advances, 2016, 6(92): 89901-89906.
[81] GONG C, ZHANG X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450.
[82] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657): 265.
[83] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270.
[84] MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2[J]. ACS nano, 2019, 13(4): 4436-4442.
[85] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials, 2018, 17(9): 778-782.
[86] SEO J, KIM D Y, AN E S, et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal[J]. Science advances, 2020, 6(3): eaay8912.
[87] O’HARA D J, ZHU T, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit[J]. Nano letters, 2018, 18(5): 3125-3131.
[88] BONILLA M, KOLEKAR S, MA Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature nanotechnology, 2018, 13(4): 289-293.
[89] LI J, ZHAO B, CHEN P, et al. Synthesis of Ultrathin Metallic MTe2 (M= V, Nb, Ta) Single-Crystalline Nanoplates[J]. Advanced Materials, 2018, 30(36): 1801043.
[90] LADO J L, FERNÁNDEZ-ROSSIER J. On the origin of magnetic anisotropy in two dimensional CrI3[J]. 2D Materials, 2017, 4(3): 035002.
[91] KLEIN D R, MACNEILL D, SONG Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nature Physics, 2019, 15(12): 1255-1260.
[92] JIN C, TAO Z, KANG K, et al. Imaging and control of critical fluctuations in two-dimensional magnets[J]. Nature Materials, 2020, 19(12): 1290-1294.
[93] ZHU F, ZHANG L, WANG X, et al. Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: Toward intrinsic gap-tunability[J]. Science advances, 2021, 7(37): eabi7532.
[94] CAI W, SUN H, XIA W, et al. Pressure-induced superconductivity and structural transition in ferromagnetic CrSiTe3[J]. Physical Review B, 2020, 102(14): 144525.
[95] OSTWAL V, SHEN T, APPENZELLER J. Efficient Spin-Orbit Torque Switching of the Semiconducting Van Der Waals Ferromagnet Cr2Ge2Te6[J]. Advanced Materials, 2020, 32(7): 1906021.
[96] ZHUANG H L, KENT P R C, HENNIG R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2[J]. Physical Review B, 2016, 93(13): 134407.
[97] DEISEROTH H J, ALEKSANDROV K, REINER C, et al. Fe3GeTe2 and Ni3GeTe2–Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties[J]. European journal of inorganic chemistry, 2006, 2006(8): 1561-1567.
[98] CHEN B, YANG J H, WANG H D, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2[J]. Journal of the Physical Society of Japan, 2013, 82(12): 124711.
[99] MAY A F, CALDER S, CANTONI C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2[J]. Physical Review B, 2016, 93(1): 014411.
[100] LIU S, YUAN X, ZOU Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. npj 2D Materials and Applications, 2017, 1(1): 1-7.
[101] TAN C, LEE J, JUNG S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J]. Nature communications, 2018, 9(1): 1-7.
[102] DENG Y, YU Y, SONG Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature, 2018, 563(7729): 94.
[103] LI Q, YANG M, GONG C, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature[J]. Nano letters, 2018, 18(9): 5974-5980.
[104] ZHENG G, XIE W Q, ALBARAKATI S, et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes[J]. Physical Review Letters, 2020, 125(4): 047202.
[105] YI J, ZHUANG H, ZOU Q, et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2[J]. 2D Materials, 2016, 4(1): 011005.
[106] JANG S W, YOON H, JEONG M Y, et al. Origin of ferromagnetism and the effect of doping on Fe3GeTe2[J]. Nanoscale, 2020, 12(25): 13501-13506.
[107] WANG Z, SAPKOTA D, TANIGUCHI T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures[J]. Nano letters, 2018, 18(7): 4303-4308.
[108] WANG X, TANG J, XIA X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2[J]. Science Advances, 2019, 5(8): eaaw8904.
[109] WU Y, ZHANG S, ZHANG J, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure[J]. Nature communications, 2020, 11(1): 1-6.
[110] LIN Z Z, CHEN X. Ultrathin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material[J]. Advanced Electronic Materials, 2020, 6(3): 1900968.
[111] 李晓兰, 郑赛珠, 叶志清,等. 脉冲激光沉积系统(PLD)的应用[J]. 江西师范大学学报(自然科学版), 2004, 028(006):515-517.
[112] FEI Z Y, HUANG B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature Materials, 2018, 17(9): 778-+.
[113] DRACHUCK G, SALMAN Z, MASTERS M W, et al. Effect of nickel substitution on magnetism in the layered van der Waals ferromagnet Fe3GeTe2[J]. Physical Review B, 2018, 98(14): 144434.
[114] ZHANG H, CHEN R, ZHAI K, et al. Itinerant ferromagnetism in van der Waals Fe5−xGeTe2 crystals above room temperature[J]. Physical Review B, 2020, 102(6): 064417.
[115] NIU W, CAO Z, WANG Y, et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness[J]. Physical Review B, 2021, 104(12): 125429.
[116] LIU Y, STAVITSKI E, ATTENKOFER K, et al. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3−xGeTe¬2[J]. Physical Review B, 2018, 97(16): 165415.
[117] ZHANG K, HAN S, LEE Y, et al. Gigantic current control of coercive field and magnetic memory based on nanometer‐thin ferromagnetic van der Waals Fe3GeTe2[J]. Advanced Materials, 2021, 33(4): 2004110.
[118] LIU S, YUAN X, ZOU Y, et al. Wafer-scale Two-dimensional Ferromagnetic Fe3GeTe2 Thin Films Grown by Molecular Beam Epitaxy[C]//APS March Meeting Abstracts. 2018, 2018: R19. 008.
[119] ROEMER R, LIU C, ZOU K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2[J]. npj 2D Materials and Applications, 2020, 4(1): 1-7.
[120] NIU W, CAO Z, WANG Y, et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness[J]. Physical Review B, 2021, 104(12): 125429.
[121] ROEMER R L. Molecular beam epitaxy growth and properties of Fe3GeTe2 thin films[D]. University of British Columbia, 2021.
[122] MAYOH D A, WOOD G D A, HOLT S J R, et al. Effects of Fe Deficiency and Co Substitution in Polycrystalline and Single Crystals of Fe3GeTe2[J]. Crystal Growth & Design, 2021, 21(12): 6786-6792.
[123] HUANG C, ZHOU B T, ZHANG H, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature communications, 2019, 10(1): 1-10.
[124] YABUKI N, MORIYA R, ARAI M, et al. Supercurrent in van der Waals Josephson junction[J]. Nature communications, 2016, 7(1): 1-5.
修改评论