中文版 | English
题名

二维铁磁材料Fe3GeTe2的电子自旋输运研究

其他题名
ELECTRON SPIN TRANSPORT IN TWO-DIMENSIONAL FERROMAGNETIC MATERIAL Fe3GeTe2
姓名
姓名拼音
WANG Zhi
学号
11930038
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
何洪涛
导师单位
物理系
论文答辩日期
2022-05-13
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

信息科学的进步离不开微电子器件技术的进步,而微电子器件技术的发展不仅要归功于微纳加工工艺的不断发展,更离不开拥有优异性能的新材料的开发和利用。如今,二维层状材料成为自旋电子学研究的新方向,而近年来Fe3GeTe2,一种新型二维铁磁材料,由于其独特的特性受到广泛关注,成为了二维材料研究的热门领域之一,被认为具有广阔的发展前景。

在本论文中,我们以Fe3GeTe2作为研究对象,通过微纳结构加工技术,制作了Fe3GeTe2的霍尔器件和Nb/Fe3GeTe2/Nb异质结器件,研究了Fe3GeTe2在低温和磁场环境下的自旋输运性质。具体而言,我们进行了以下工作:

基于Fe3GeTe2的霍尔器件,对其纵向电阻和霍尔电阻进行了测量。通过分析纵向电阻对温度的依赖关系,我们确认Fe3GeTe2的居里温度(TC)约为205 K。随着温度降低,Fe3GeTe2首先会表现出金属性,但在低温下(小于~25 K)表现出类似半导体的电阻特性。这种性质的变化可能是由于低温下Fe3GeTe2中出现反铁磁性使磁性散射增强所致。此外,霍尔电阻在TC之下表现出了显著的反常霍尔效应。随着温度升高,矫顽场逐渐降低,自发反常霍尔电阻却显示出先升后降的变化。我们认为这进一步佐证了低温下Fe3GeTe2中反铁磁性和铁磁性的共存。磁滞回线的高矩形性还表明Fe3GeTe2具有很强的垂直磁各向异性,易磁化轴垂直于Fe3GeTe2表面。

Nb/Fe3GeTe2/Nb异质结器件的微分电阻测量中,我们发现在Fe3GeTe2Nb之间构成的铁磁/超导界面上存在有受到强烈抑制的安德烈夫反射。在Nb的超导相变温度以下,这在一定偏压(V)范围内产生了一个较宽的微分电阻平台(|V|<ΔL),且ΔL的值与Nb的超导能隙相当吻合。更为重要的是,我们还在微分电阻谱内观察到了另一个更窄的微分电阻平台(|V|<ΔS),这意味着Nb的超导性与Fe3GeTe2的铁磁性的耦合,在异质结的界面上诱导出了一个新的超导相,其超导能隙的大小决定了ΔS。除此以外,我们还研究了安德烈夫反射对器件磁阻的影响,根据所测微分电阻谱及相关理论估算了Fe3GeTe2的自旋极化率。

我们的工作有助于加深人们对Fe3GeTe2的自旋输运性质的理解。对基于Fe3GeTe2的超导异质结中的超导-铁磁相互作用的研究,还揭示出一个新的界面超导相的存在,这可能有助于未来人们对自旋三重态超导的研究。

其他摘要

The progress of information technology relies not only on the progress of microelectronic device technology, but also on the development and utilization of new materials with excellent performance. Nowadays, a new research direction in the field of spintronics is the study of two-dimensional layered materials, especially Fe3GeTe2. As a new type of two-dimensional ferromagnetic materials, it has received intense attention due to its unique physical properties and become one of the hot areas of two-dimensional materials research.

In this thesis, we aim to study the magnetotransport properties of Fe3GeTe2.We have fabricated Fe3GeTe2 Hall devices and Nb/Fe3GeTe2/Nb heterojunction devices by micro-nano fabrication techniques. We have systematically investigated the transport properties of Fe3GeTe2 under different temperatures and magnetic fields. Specifically, we have carried out the following work.

Based on the Hall devices, we have measured the longitudinal and Hall resistance of Fe3GeTe2. From the temperature dependence of resistance, the Curie temperature (TC) is determined to be around 205 K. An upturn of resistance below 25 K is also noticed, which might arise from the enhanced magnetic scattering due to the emergence of antiferromagnetism (AFM) in Fe3GeTe2 at low temperatures. Besides, the measured Hall resistance exhibits prominent anomalous Hall effect (AHE) below TC. With increasing temperatures, the coercive field decreases, but the spontaneous AHE resistance shows a non-monotonic dependence on the temperature, implying the coexistence of AFM and ferromagnetism (FM) in Fe3GeTe2. The high degree of squareness of the hysteresis loop further reveals the perpendicular magnetic anisotropy in Fe3GeTe2.

In the differential resistance measurement of Nb/Fe3GeTe2/Nb heterojunction devices, we have observed strongly suppressed Andreev reflections at the interface between ferromagnetic Fe3GeTe2 and superconducting Nb. It gives rise to a wide differential resistance plateau in the bias (V) region with |V|<ΔL below the superconducting transition temperature of Nb and the value ΔL of coincides well with the superconducting gap of Nb. More interestingly, another narrower differential resistance plateau |V|<ΔS is also observed in the differential resistance spectra. It’s believed that the coupling of FM from Fe3GeTe2 and superconductivity (SC) from Nb results in a new superconducting phase at the junction interface with the superconducting gap characterized by ΔS. Besides that, we have also studied the impact of the interface Andreev refection on the device magnetoresistance and estimated the spin polarization ratio of Fe3GeTe2.

Our work helps to deepen our understanding of the spin transport properties of Fe3GeTe2. The study of the interplay between SC and FM in Fe3GeTe2-based ferromagnet-superconductor heterostructures even reveals the presence of a new interface superconducting phase, which might be of great interest to the field of triplet superconductivity.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85.
[2] HIROHATA A, YAMADA K, NAKATANI Y, et al. Review on spintronics: Principles and device applications[J]. Journal of Magnetism and Magnetic Materials, 2020: 166711.
[3] BINASCH G, GRÜNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Physical review B, 1989, 39(7): 4828.
[4] BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices[J]. Physical review letters, 1988, 61(21): 2472.
[5] LINDER J, ROBINSON J W A. Superconducting spintronics[J]. Nature Physics, 2015, 11(4): 307-315.
[6] BELIN-FERRÉ E. Mechanical Properties of Complex Intermetallics[M]. World Scientific, 2010: 423.
[7] THOMSON W. XIX. On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron[J]. Proceedings of the Royal Society of London, 1857 (8): 546-550.
[8] VAN ELST H C. The anisotropy in the magneto-resistance of some nickel alloys[J]. Physica, 1959, 25(1-6): 708-720.
[9] MEADEN G T. Conduction electron scattering and the resistance of the magnetic elements[J]. Contemporary Physics, 1971, 12(4): 313-337.
[10] MCGUIRE T, POTTER R L. Anisotropic magnetoresistance in ferromagnetic 3d alloys[J]. IEEE Transactions on Magnetics, 1975, 11(4): 1018-1038.
[11] KOKADO S, TSUNODA M. Anisotropic magnetoresistance effect: general expression of AMR ratio and intuitive explanation for sign of AMR ratio[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 750: 978-982.
[12] BINASCH G, GRÜNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Physical review B, 1989, 39(7): 4828.
[13] CAMLEY R E, BARNAŚ J. Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling[J]. Physical review letters, 1989, 63(6): 664.
[14] DIENY B, VEDYAYEV A, RYZHANOVA N. Comparison of semi-classical and real-space quantum theories of giant magnetoresistance[J]. Journal of magnetism and magnetic materials, 1993, 121(1-3): 366-370.
[15] JOHNSON B L, CAMLEY R E. Theory of giant magnetoresistance effects in Fe/Cr multilayers: Spin-dependent scattering from impurities[J]. Physical Review B, 1991, 44(18): 9997.
[16] ENNEN I, KAPPE D, REMPEL T, et al. Giant magnetoresistance: basic concepts, microstructure, magnetic interactions and applications[J]. Sensors, 2016, 16(6): 904.
[17] JULLIERE M. Tunneling between ferromagnetic films[J]. Physics letters A, 1975, 54(3): 225-226.
[18] HALL E H. On a new action of the magnet on electric currents[J]. American Journal of Mathematics, 1879, 2(3): 287-292.
[19] HALL E H. XVIII. On the “Rotational Coefficient” in nickel and cobalt[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(74): 157-172.
[20] SMITH A W, SEARS R W. The Hall effect in Permalloy[J]. Physical Review, 1929, 34(11): 1466.
[21] 于广华, 彭文林, 张静言. 反常霍尔效应及其应用研究进展[J]. 金属功能材料, 2016, 23(3):10.
[22] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
[23] KARPLUS R, LUTTINGER J M. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5): 1154.
[24] LUTTINGER J M. Theory of the Hall effect in ferromagnetic substances[J]. Physical Review, 1958, 112(3): 739.
[25] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Reviews of modern physics, 2010, 82(3): 1959.
[26] SMIT J. The spontaneous Hall effect in ferromagnetics I[J]. Physica, 1955, 21(6-10): 877-887.
[27] BERGER L. Side-jump mechanism for the Hall effect of ferromagnets[J]. Physical Review B, 1970, 2(11): 4559.
[28] SETHU K K V. Spin orbit torques in magnetic materials[D]. Master’s thesis, Katholieke Universiteit Leuven, Belgium, 2017.
[29] RAMASWAMY R, LEE J M, CAI K, et al. Recent advances in spin-orbit torques: Moving towards device applications[J]. Applied Physics Reviews, 2018, 5(3): 031107.
[30] MIHAI MIRON I, GAUDIN G, AUFFRET S, ET AL. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer[J]. Nature materials, 2010, 9(3): 230-234.
[31] LIU L, PAI C F, LI Y, ET AL. Spin-torque switching with the giant spin Hall effect of tantalum[J]. Science, 2012, 336(6081): 555-558.
[32] D'YAKONOV M I, PEREL V I. Possibility of orienting electron spins with current[J]. ZhETF Pisma Redaktsiiu, 1971, 13: 657.
[33] HIRSCH J E. Spin hall effect[J]. Physical review letters, 1999, 83(9): 1834.
[34] EDELSTEIN V M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems[J]. Solid State Communications, 1990, 73(3): 233-235.
[35] BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity[J]. Physical Review, 1957, 106(1): 162.
[36] MATTHIAS B T, SUHL H, CORENZWIT E. Spin exchange in superconductors[J]. Physical Review Letters, 1958, 1(3): 92.
[37] KAMERLINGH ONNES H. The resistance of pure mercury at helium temperatures[J]. Commun. Phys. Lab. Univ. Leiden, b, 1911, 120.
[38] MEISSNER W, OCHSENFELD R. Ein neuer effekt bei eintritt der supraleitfähigkeit[J]. Naturwissenschaften, 1933, 21(44): 787-788.
[39] YAMAKI K, BAMBA Y, IRIE A. Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8−δ by partial melting[J]. Japanese Journal of Applied Physics, 2018, 57(3): 033101.
[40] FISCHER Ø, ISHIKAWA M, PELIZZONE M, et al. Exchange and crystalline field in metallic compounds. coexistence of superconductivity and long range magnetic order[J]. Le Journal de Physique Colloques, 1979, 40(C5): C5-89-C5-94.
[41] MACHIDA K, YOUNGNER D. Theory of superconductivity in ternary rare-earth compounds. II[J]. J. Low Temp. Phys.;(United States), 1979, 35(5).
[42] EISAKI H, TAKAGI H, CAVA R J, et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides[J]. Physical Review B, 1994, 50(1): 647.
[43] BERNHARD C, TALLON J L, NIEDERMAYER C, et al. Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization[J]. Physical Review B, 1999, 59(21): 14099.
[44] CHMAISSEM O, JORGENSEN J D, SHAKED H, et al. Crystal and magnetic structure of ferromagnetic superconducting RuSr2GdCu2O8[J]. Physical Review B, 2000, 61(9): 6401.
[45] BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of modern physics, 2005, 77(3): 935.
[46] MEISSNER H. Superconductivity of contacts with interposed barriers[J]. Physical Review, 1960, 117(3): 672.
[47] RADOVIĆ Z, DOBROSAVLJEVIĆ-GRUJIĆ L, BUZDIN A I, et al. Upper critical fields of superconductor-ferromagnet multilayers[J]. Physical Review B, 1988, 38(4): 2388.
[48] XIA J, SHELUKHIN V, KARPOVSKI M, et al. Inverse proximity effect in superconductor-ferromagnet bilayer structures[J]. Physical review letters, 2009, 102(8): 087004.
[49] PARASKEVOPOULOS D, MESERVEY R, TEDROW P M. Spin polarization of electrons tunneling from 3d ferromagnetic metals and alloys[J]. Physical Review B, 1977, 16(11): 4907.
[50] TEDROW P M, TKACZYK J E, KUMAR A. Spin-polarized electron tunneling study of an artificially layered superconductor with internal magnetic field: EuO-Al[J]. Physical review letters, 1986, 56(16): 1746.
[51] TAKAHASHI S, IMAMURA H, MAEKAWA S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions[J]. Physical review letters, 1999, 82(19): 3911.
[52] FULDE P, FERRELL R A. Superconductivity in a strong spin-exchange field[J]. Physical Review, 1964, 135(3A): A550.
[53] LARKIN A I, OVCHINNIKOV Y N. Nonuniform state of superconductors[J]. Soviet Physics-JETP, 1965, 20(3): 762-762.
[54] PREPELITSA A, ZDRAVKOV V, MOLCHANOVA E, et al. Nonuniform superconducting state in superconductor/ferromagnet nanoscale layered system[J]. Moldavian Journal of the Physical Sciences, 2006, 5(1): 71-77.
[55] ESCHRIG M. Spin-polarized supercurrents for spintronics[J]. Phys. Today, 2011, 64(1): 43.
[56] ESCHRIG M. Spin-polarized supercurrents for spintronics: a review of current progress[J]. Reports on Progress in physics. Physical Society (Great Britain), 2015, 78(10): 104501-104501.
[57] ANDREEV A F. The thermal conductivity of the intermediate state in superconductors[J]. Журнал экспериментальной и теоретической физики, 1964, 46(5): 1823-1828.
[58] SOULEN R J, BYERS J M, OSOFSKY M S, et al. Measuring the spin polarization of a metal with a superconducting point contact[J]. science, 1998, 282(5386): 85-88.
[59] TEDROW P M, MESERVEY R. Spin-dependent tunneling into ferromagnetic nickel[J]. Physical Review Letters, 1971, 26(4): 192.
[60] MOODERA J S, MIAO G X, SANTOS T S. Frontiers in spin-polarized tunneling[J]. Physics Today, 2010, 63(4): 46.
[61] MESERVEY R, TEDROW P M. Spin polarization of tunneling electrons from films of Fe, Co, Ni, and Gd[J]. Solid State Communications, 1972, 11(2): 333-336.
[62] TEDROW P M, MESERVEY R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd[J]. Physical Review B, 1973, 7(1): 318.
[63] BERGERET F S, VOLKOV A F, EFETOV K B. Long-range proximity effects in superconductor-ferromagnet structures[J]. Physical review letters, 2001, 86(18): 4096.
[64] KEIZER R S, GOENNENWEIN S T B, KLAPWIJK T M, et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2[J]. Nature, 2006, 439(7078): 825-827.
[65] LINDER J, ROBINSON J W A. Superconducting spintronics[J]. Nature Physics, 2015, 11(4): 307-315.
[66] ESCHRIG M. Spin-polarized supercurrents for spintronics: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(10): 104501.
[67] ESCHRIG M, KOPU J, CUEVAS J C, et al. Theory of half-metal/superconductor heterostructures[J]. Physical review letters, 2003, 90(13): 137003.
[68] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666-669.
[69] MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22): 1133.
[70] HOHENBERG P C. Existence of long-range order in one and two dimensions[J]. Physical Review, 1967, 158(2): 383.
[71] COLEMAN S. There are no Goldstone bosons in two dimensions[J]. Communications in Mathematical Physics, 1973, 31(4): 259-264.
[72] YAZYEV O V, HELM L. Defect-induced magnetism in graphene[J]. Physical Review B, 2007, 75(12): 125408.
[73] KHALID M, ZIESE M, SETZER A, et al. Defect-induced magnetic order in pure ZnO films[J]. Physical Review B, 2009, 80(3): 035331.
[74] ESQUINAZI P, HERGERT W, SPEMANN D, et al. Defect-induced magnetism in solids[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4668-4674.
[75] ANDRIOTIS A N, MENON M. Defect-induced magnetism: Codoping and a prescription for enhanced magnetism[J]. Physical Review B, 2013, 87(15): 155309.
[76] MAOZ B M, TIROSH E, SADAN M B, et al. Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO[J]. Physical Review B, 2011, 83(16): 161201.
[77] WANG H, EYERT V, SCHWINGENSCHLÖGL U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3[J]. Journal of Physics: Condensed Matter, 2011, 23(11): 116003.
[78] SIVADAS N, DANIELS M W, SWENDSEN R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers[J]. Physical Review B, 2015, 91(23): 235425.
[79] LIU J, SUN Q, KAWAZOE Y, et al. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers[J]. Physical Chemistry Chemical Physics, 2016, 18(13): 8777-8784.
[80] XIANG H, XU B, XIA Y, et al. Tunable electronic structures in MPX3 (M= Zn, Cd; X= S, Se) monolayers by strain engineering[J]. RSC advances, 2016, 6(92): 89901-89906.
[81] GONG C, ZHANG X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450.
[82] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657): 265.
[83] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270.
[84] MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2[J]. ACS nano, 2019, 13(4): 4436-4442.
[85] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials, 2018, 17(9): 778-782.
[86] SEO J, KIM D Y, AN E S, et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal[J]. Science advances, 2020, 6(3): eaay8912.
[87] O’HARA D J, ZHU T, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit[J]. Nano letters, 2018, 18(5): 3125-3131.
[88] BONILLA M, KOLEKAR S, MA Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature nanotechnology, 2018, 13(4): 289-293.
[89] LI J, ZHAO B, CHEN P, et al. Synthesis of Ultrathin Metallic MTe2 (M= V, Nb, Ta) Single-Crystalline Nanoplates[J]. Advanced Materials, 2018, 30(36): 1801043.
[90] LADO J L, FERNÁNDEZ-ROSSIER J. On the origin of magnetic anisotropy in two dimensional CrI3[J]. 2D Materials, 2017, 4(3): 035002.
[91] KLEIN D R, MACNEILL D, SONG Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nature Physics, 2019, 15(12): 1255-1260.
[92] JIN C, TAO Z, KANG K, et al. Imaging and control of critical fluctuations in two-dimensional magnets[J]. Nature Materials, 2020, 19(12): 1290-1294.
[93] ZHU F, ZHANG L, WANG X, et al. Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: Toward intrinsic gap-tunability[J]. Science advances, 2021, 7(37): eabi7532.
[94] CAI W, SUN H, XIA W, et al. Pressure-induced superconductivity and structural transition in ferromagnetic CrSiTe3[J]. Physical Review B, 2020, 102(14): 144525.
[95] OSTWAL V, SHEN T, APPENZELLER J. Efficient Spin-Orbit Torque Switching of the Semiconducting Van Der Waals Ferromagnet Cr2Ge2Te6[J]. Advanced Materials, 2020, 32(7): 1906021.
[96] ZHUANG H L, KENT P R C, HENNIG R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2[J]. Physical Review B, 2016, 93(13): 134407.
[97] DEISEROTH H J, ALEKSANDROV K, REINER C, et al. Fe3GeTe2 and Ni3GeTe2–Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties[J]. European journal of inorganic chemistry, 2006, 2006(8): 1561-1567.
[98] CHEN B, YANG J H, WANG H D, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2[J]. Journal of the Physical Society of Japan, 2013, 82(12): 124711.
[99] MAY A F, CALDER S, CANTONI C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2[J]. Physical Review B, 2016, 93(1): 014411.
[100] LIU S, YUAN X, ZOU Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. npj 2D Materials and Applications, 2017, 1(1): 1-7.
[101] TAN C, LEE J, JUNG S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J]. Nature communications, 2018, 9(1): 1-7.
[102] DENG Y, YU Y, SONG Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature, 2018, 563(7729): 94.
[103] LI Q, YANG M, GONG C, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature[J]. Nano letters, 2018, 18(9): 5974-5980.
[104] ZHENG G, XIE W Q, ALBARAKATI S, et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes[J]. Physical Review Letters, 2020, 125(4): 047202.
[105] YI J, ZHUANG H, ZOU Q, et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2[J]. 2D Materials, 2016, 4(1): 011005.
[106] JANG S W, YOON H, JEONG M Y, et al. Origin of ferromagnetism and the effect of doping on Fe3GeTe2[J]. Nanoscale, 2020, 12(25): 13501-13506.
[107] WANG Z, SAPKOTA D, TANIGUCHI T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures[J]. Nano letters, 2018, 18(7): 4303-4308.
[108] WANG X, TANG J, XIA X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2[J]. Science Advances, 2019, 5(8): eaaw8904.
[109] WU Y, ZHANG S, ZHANG J, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure[J]. Nature communications, 2020, 11(1): 1-6.
[110] LIN Z Z, CHEN X. Ultrathin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material[J]. Advanced Electronic Materials, 2020, 6(3): 1900968.
[111] 李晓兰, 郑赛珠, 叶志清,等. 脉冲激光沉积系统(PLD)的应用[J]. 江西师范大学学报(自然科学版), 2004, 028(006):515-517.
[112] FEI Z Y, HUANG B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature Materials, 2018, 17(9): 778-+.
[113] DRACHUCK G, SALMAN Z, MASTERS M W, et al. Effect of nickel substitution on magnetism in the layered van der Waals ferromagnet Fe3GeTe2[J]. Physical Review B, 2018, 98(14): 144434.
[114] ZHANG H, CHEN R, ZHAI K, et al. Itinerant ferromagnetism in van der Waals Fe5−xGeTe2 crystals above room temperature[J]. Physical Review B, 2020, 102(6): 064417.
[115] NIU W, CAO Z, WANG Y, et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness[J]. Physical Review B, 2021, 104(12): 125429.
[116] LIU Y, STAVITSKI E, ATTENKOFER K, et al. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3−xGeTe¬2[J]. Physical Review B, 2018, 97(16): 165415.
[117] ZHANG K, HAN S, LEE Y, et al. Gigantic current control of coercive field and magnetic memory based on nanometer‐thin ferromagnetic van der Waals Fe3GeTe2[J]. Advanced Materials, 2021, 33(4): 2004110.
[118] LIU S, YUAN X, ZOU Y, et al. Wafer-scale Two-dimensional Ferromagnetic Fe3GeTe2 Thin Films Grown by Molecular Beam Epitaxy[C]//APS March Meeting Abstracts. 2018, 2018: R19. 008.
[119] ROEMER R, LIU C, ZOU K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2[J]. npj 2D Materials and Applications, 2020, 4(1): 1-7.
[120] NIU W, CAO Z, WANG Y, et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness[J]. Physical Review B, 2021, 104(12): 125429.
[121] ROEMER R L. Molecular beam epitaxy growth and properties of Fe3GeTe2 thin films[D]. University of British Columbia, 2021.
[122] MAYOH D A, WOOD G D A, HOLT S J R, et al. Effects of Fe Deficiency and Co Substitution in Polycrystalline and Single Crystals of Fe3GeTe2[J]. Crystal Growth & Design, 2021, 21(12): 6786-6792.
[123] HUANG C, ZHOU B T, ZHANG H, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature communications, 2019, 10(1): 1-10.
[124] YABUKI N, MORIYA R, ARAI M, et al. Supercurrent in van der Waals Josephson junction[J]. Nature communications, 2016, 7(1): 1-5.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335879
专题理学院_物理系
推荐引用方式
GB/T 7714
王植. 二维铁磁材料Fe3GeTe2的电子自旋输运研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930038-王植-物理系.pdf(5208KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王植]的文章
百度学术
百度学术中相似的文章
[王植]的文章
必应学术
必应学术中相似的文章
[王植]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。