[1] BYEON H J, THAO LE Q, LEE S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors [J]. Journal of Controlled Release, 2016, 225: 301-313.
[2] BI Y, LIU L, LU Y, et al. T7 peptide-functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma [J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27465-27473.
[3] ALIBOLANDI M, ABNOUS K, HADIZADEH F, et al. Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo [J]. Journal of Controlled Release, 2016, 241: 45-56.
[4] SUN J, LEI Y, DAI Z, et al. Sustained release of brimonidine from a new composite drug delivery system for treatment of glaucoma [J]. ACS Applied Materials & Interfaces, 2017, 9(9): 7990-7999.
[5] CHEN T, LI C, LI Y, et al. Small-Sized mPEG-PLGA nanoparticles of schisantherin a with sustained release for enhanced bain uptake and anti-parkinsonian activity [J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9516-9527.
[6] WANG H, WU J, XIE K, et al. Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: extended and sequentially controllable drug release [J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10567-10576.
[7] NGUYEN D N, ROTH T L, LI P J, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency [J]. Nature Biotechnology, 2020, 38(1): 44-49.
[8] SHAHBAZI R, SGHIA-HUGHES G, REID J L, et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations [J]. Nature Materials, 2019, 18(10): 1124-1132.
[9] CHEN G, ABDEEN A A, WANG Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing [J]. Nature Nanotechnology, 2019, 14(10): 974-980.
[10] ZHANG Y N, POON W, TAVARES A J, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination [J]. Journal of Controlled Release, 2016, 240: 332-348.
[11] POON W, KINGSTON B R, OUYANG B, et al. A framework for designing delivery systems [J]. Nature Nanotechnology, 2020, 15(10): 819-829.
[12] PERRAULT S D, WALKEY C, JENNINGS T, et al. Mediating tumor targeting efficiency of nanoparticles through design [J]. Nano Letters, 2009, 9(5): 1909-1915.
[13] RAHMAN Y E, CERNY E A, PATEL K R, et al. Differential uptake of liposomes varying in size and lipid composition by parenchymal and kupffer cells of mouse liver [J]. Life Sciences, 1982, 31(19): 2061-2071.
[14] HUANG X, LI L, LIU T, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo [J]. ACS Nano, 2011, 5(7): 5390-5399.
[15] ARNIDA, JANáT-AMSBURY M M, RAY A, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(3): 417-423.
[16] ALBANESE A, TANG P S, CHAN W C. The effect of nanoparticle size, shape, and surface chemistry on biological systems [J]. Annual Review of Biomedical Engineering, 2012, 14: 1-16.
[17] SUN J, ZHANG L, WANG J, et al. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake [J]. Advanced Materials, 2015, 27(8): 1402-1407.
[18] VALENCIA P M, FAROKHZAD O C, KARNIK R, et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles [J]. Nature Nanotechnology, 2012, 7(10): 623-629.
[19] HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip [J]. Science, 2010, 328(5986): 1662-1668.
[20] TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology [J]. Science, 2019, 364(6444): 952-955.
[21] KANASTY R, DORKIN J R, VEGAS A, et al. Delivery materials for siRNA therapeutics [J]. Nature Materials, 2013, 12(11): 967-977.
[22] HATIT M Z C, LOKUGAMAGE M P, DOBROWOLSKI C N, et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles [J]. Nature Nanotechnology, 2022, 17: 310–318.
[23] HOU X, ZAKS T, LANGER R, et al. Lipid nanoparticles for mRNA delivery [J]. Nature Reviews Materials, 2021, 6(12): 1078-1094.
[24] KATTI A, DIAZ B J, CARAGINE C M, et al. CRISPR in cancer biology and therapy [J]. Nature Reviews Cancer, 2022: 1-21.
[25] TONG S, MOYO B, LEE C M, et al. Engineered materials for in vivo delivery of genome-editing machinery [J]. Nature Reviews Materials, 2019, 4: 726-737.
[26] HOY S M. Patisiran: first global approval [J]. Drugs, 2018, 78(15): 1625-1631.
[27] LAMB Y N. BNT162b2 mRNA COVID-19 vaccine: first approval [J]. Drugs, 2021, 81(4): 495-501.
[28] SPRINGER A D, DOWDY S F. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics [J]. Nucleic Acid Therapeutics, 2018, 28(3): 109-118.
[29] DAHLMAN J E, BARNES C, KHAN O, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight [J]. Nature Nanotechnology, 2014, 9(8): 648-655.
[30] WANG J, LI Y, NIE G. Multifunctional biomolecule nanostructures for cancer therapy [J]. Nature Reviews Materials, 2021, 6(9): 766-783.
[31] KULKARNI J A, WITZIGMANN D, THOMSON S B, et al. The current landscape of nucleic acid therapeutics [J]. Nature Nanotechnology, 2021, 16(6): 630-643.
[32] CREIXELL M, PEPPAS N A. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance [J]. Nano Today, 2012, 7(4): 367-379.
[33] SMITH T T, STEPHAN S B, MOFFETT H F, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers [J]. Nature Nanotechnology, 2017, 12(8): 813-820.
[34] ZHAO Z, LI Y, LIU H, et al. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer [J]. Science Advances, 2020, 6(29): eabb0616.
[35] ZHAO X, LI F, LI Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer [J]. Biomaterials, 2015, 46: 13-25.
[36] AHN J, KO J, LEE S, et al. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening [J]. Advanced Drug Delivery Reviews, 2018, 128: 29-53.
[37] SONG Y, HORMES J, KUMAR C S. Microfluidic synthesis of nanomaterials [J]. Small, 2008, 4(6): 698-711.
[38] VALENCIA P M, PRIDGEN E M, RHEE M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy [J]. ACS Nano, 2013, 7(12): 10671-10680.
[39] ROSENBLUM D, GUTKIN A, KEDMI R, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy [J]. Science Advances, 2020, 6(47): eabc9450.
[40] DAMMES N, GOLDSMITH M, RAMISHETTI S, et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics [J]. Nature Nanotechnology, 2021, 16(9): 1030-1038.
[41] VALENCIA P M, BASTO P A, ZHANG L, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing [J]. ACS Nano, 2010, 4(3): 1671-1679.
[42] DONG R, LIU Y, MOU L, et al. Microfluidics-based biomaterials and biodevices [J]. Advanced Materials, 2019, 31(45): e1805033.
[43] BHATIA S N, INGBER D E. Microfluidic organs-on-chips [J]. Nature biotechnology, 2014, 32(8): 760-772.
[44] DU B, JIANG X, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime [J]. Nature Nanotechnology, 2017, 12(11): 1096-1102.
[45] LIU J, YU M, NING X, et al. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles [J]. Angewandte Chemie (International ed in English), 2013, 52(48): 12572-12576.
[46] WANG P, ZHANG L, XIE Y, et al. Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier [J]. Advanced Science, 2017, 4(11): 1700175.
[47] ZHANG L, WANG L, XIE Y, et al. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases [J]. Angewandte Chemie (International ed in English), 2019, 58(36): 12404-12408.
[48] RAAL F J, HONARPOUR N, BLOM D J, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial [J]. Lancet, 2015, 385(9965): 341-350.
[49] BETTERIDGE D J. Cardiovascular endocrinology in 2012: PCSK9-an exciting target for reducing LDL-cholesterol levels [J]. Nature Reviews Endocrinology, 2013, 9(2): 76-78.
[50] LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma [J]. Nature Reviews Disease Primers, 2021, 7(1): 6.
[51] LLOVET J M, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma [J]. Nature Reviews Clinical Oncology, 2018, 15(10): 599-616.
[52] VILLANUEVA A. Hepatocellular carcinoma [J]. The New England journal of medicine, 2019, 380(15): 1450-1462.
[53] KUDO M, FINN R S, QIN S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial [J]. Lancet, 2018, 391(10126): 1163-1173.
[54] FIRTINA KARAGONLAR Z, KOC D, ISCAN E, et al. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells [J]. Cancer Science, 2016, 107(4): 407-416.
[55] ABOU-ALFA G K, MEYER T, CHENG A L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma [J]. The New England Journal of Medicine, 2018, 379(1): 54-63.
[56] NOVINA C D, SHARP P A. The RNAi revolution [J]. Nature, 2004, 430(6996): 161-164.
[57] WITTRUP A, LIEBERMAN J. Knocking down disease: a progress report on siRNA therapeutics [J]. Nature Reviews Genetics, 2015, 16(9): 543-552.
[58] LESSEL D, ZEITLER D M, REIJNDERS M R F, et al. Germline AGO2 mutations impair RNA interference and human neurological development [J]. Nature Communications, 2020, 11(1): 1-14.
[59] QIN B, CHENG K. Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells [J]. Breast Cancer Research, 2010, 12(5): R74.
[60] WEI X, SONG M, LI W, et al. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance [J]. Theranostics, 2021, 11(13): 6334-6354.
[61] DENG Z J, MORTON S W, BEN-AKIVA E, et al. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment [J]. ACS Nano, 2013, 7(11): 9571-9584.
[62] BOYD B J, MCDOWELL A. Microfluidics in nanomedicine [J]. Pharmaceutical Nanotechnology, 2019, 7(6): 422.
[63] KARNIK R, GU F, BASTO P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles [J]. Nano Letters, 2008, 8(9): 2906-2912.
[64] RHEE M, VALENCIA P M, RODRIGUEZ M I, et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels [J]. Advanced Materials, 2011, 23(12): H79-83.
[65] ZHANG L, FENG Q, WANG J, et al. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery [J]. Angewandte Chemie (International ed in English), 2015, 54(13): 3952-3956.
[66] FENG Q, ZHANG L, LIU C, et al. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters [J]. Biomicrofluidics, 2015, 9(5): 052604.
[67] ZHANG L, FENG Q, WANG J, et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: understanding flexibility-regulated cell-nanoparticle interaction [J]. ACS Nano, 2015, 9(10): 9912-9921.
[68] ELIA U, RAMISHETTI S, ROSENFELD R, et al. Design of SARS-CoV-2 hFc-conjugated receptor-binding domain mRNA vaccine delivered via lipid nanoparticles [J]. ACS Nano, 2021, 15(6): 9627-9637.
[69] NERI D, BICKNELL R. Tumour vascular targeting [J]. Nature Reviews Cancer, 2005, 5(6): 436-446.
[70] MATSUMOTO Y, NICHOLS J W, TOH K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery [J]. Nature Nanotechnology, 2016, 11(6): 533-538.
[71] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery [J]. Nature Biotechnology, 2015, 33(9): 941-951.
[72] WU W, HANSEN C J, ARAGóN A, et al. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport [J]. Soft Matter, 2010, 6(4): 739–742.
[73] VU M N, RAJASEKHAR P, POOLE D, et al. Rapid assessment of nanoparticle extravasation in a microfluidic tumor model [J]. ACS Applied Nano Materials, 2019, 2(4): 1844-1856.
[74] TSAI H F, TRUBELJA A, SHEN A Q, et al. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment [J]. Journal of the Royal Society, Interface, 2017, 14(131): 20170137.
[75] ZERVANTONAKIS I K, HUGHES-ALFORD S K, CHAREST J L, et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(34): 13515-13520.
[76] CHEN Y Y, SYED A M, MACMILLAN P, et al. Flow rate affects nanoparticle uptake into endothelial cells [J]. Advanced Materials, 2020, 32(24): e1906274.
[77] ALBANESE A, LAM A K, SYKES E A, et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport [J]. Nature Communications, 2013, 4(1): 1-8.
[78] HU B, LI B, LI K, et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia [J]. Science Advances, 2022, 8(7): eabm1418.
[79] ZHU A X, FINN R S, EDELINE J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial [J]. The Lancet Oncology, 2018, 19(7): 940-952.
[80] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma [J]. The New England Journal of Medicine, 2008, 359(4): 378-390.
[81] MéNDEZ-BLANCO C, FONDEVILA F, GARCíA-PALOMO A, et al. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors [J]. Experimental & Molecular Medicine, 2018, 50(10): 1-9.
[82] CHEN J, JIN R, ZHAO J, et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma [J]. Cancer Letters, 2015, 367(1): 1-11.
[83] AL-SALAMA Z T, SYED Y Y, SCOTT L J. Lenvatinib: a review in hepatocellular carcinoma [J]. Drugs, 2019, 79(6): 665-674.
[84] LIANG Y, ZHENG T, SONG R, et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma [J]. Hepatology, 2013, 57(5): 1847-1857.
[85] WILSON W R, HAY M P. Targeting hypoxia in cancer therapy [J]. Nature Reviews Cancer, 2011, 11(6): 393-410.
[86] SONG Z, LIU T, CHEN J, et al. HIF-1α-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib [J]. Cancer Letters, 2019, 460: 96-107.
[87] SEMENZA G L. Targeting HIF-1 for cancer therapy [J]. Nature Reviews Cancer, 2003, 3(10): 721-732.
[88] LAGORY E L, GIACCIA A J. The ever-expanding role of HIF in tumour and stromal biology [J]. Nature Cell Biology, 2016, 18(4): 356-365.
[89] CRAMER T, VAUPEL P. Severe hypoxia is a typical characteristic of human hepatocellular carcinoma: scientific fact or fallacy? [J]. Journal of Hepatology, 2022, 76(4):975-980.
[90] IOMMARINI L, PORCELLI A M, GASPARRE G, et al. Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer [J]. Frontiers in Oncology, 2017, 7: 286.
[91] MUñOZ-SáNCHEZ J, CHáNEZ-CáRDENAS M E. The use of cobalt chloride as a chemical hypoxia model [J]. Journal of Applied Toxicology, 2019, 39(4): 556-570.
[92] MA Y-H V, MIDDLETON K, YOU L, et al. A review of microfluidic approaches for investigating cancer extravasation during metastasis [J]. Microsystems & Nanoengineering, 2018, 4(1): 17104.
[93] SONTHEIMER-PHELPS A, HASSELL B A, INGBER D E. Modelling cancer in microfluidic human organs-on-chips [J]. Nature Reviews Cancer, 2019, 19(2): 65-81.
[94] CHOI Y, HYUN E, SEO J, et al. A microengineered pathophysiological model of early-stage breast cancer [J]. Lab on a Chip, 2015, 15(16): 3350-3357.
[95] SALIPANTE P F, HUDSON S D, ALIMPERTI S. Blood vessel-on-a-chip examines the biomechanics of microvasculature [J]. Soft Matter, 2021, 18(1): 117-125.
[96] CHENG S, HANG C, DING L, et al. Electronic blood vessel [J]. Matter, 2020, 3(5): 1664-1684.
[97] HANSSON G K, LIBBY P. The immune response in atherosclerosis: a double-edged sword [J]. Nature Reviews Immunology, 2006, 6(7): 508-519.
[98] NAKASHIMA Y, RAINES E W, PLUMP A S, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18(5): 842-851.
[99] OSBORN L, HESSION C, TIZARD R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes [J]. Cell, 1989, 59(6): 1203-1211.
[100] ZHOU Q, SHAO S, WANG J, et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy [J]. Nature Nanotechnology, 2019, 14(8): 799-809.
修改评论