[1] GOODENOUGH J B. Electrochemical Energy Storage in a Sustainable Modern Society[J]. Energy & Environmental Science, 2014, 7(1): 14-18.
[2] ARMAND M, TARASCON J M. Building Better Batteries[J]. Nature, 2008, 451: 652-657.
[3] BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178.
[4] MAUGER A, JULIEN C M., ARMAND M, et al. Building Better Batteries in the Solid State: A Review[J], 2019, 12(23): 3892.
[5] GOODENOUGH J B. How We Made the Li-Ion Rechargeable Battery[J]. Nature Electronics, 2018, 1(3): 204-204.
[6] YAN PF, ZHENG JM, LIU J, et al. Tailoring Grain Boundary Structures and Chemistry of Ni-Rich Layered Cathodes for Enhanced Cycle Stability of Lithium-Ion Batteries[J]. Nature Energy, 2018, 3(7): 600-605.
[7] CHEW S Y, GUO Z P, WANG J Z, et al. Novel Nano-silicon/Polypyrrole Composites for Lithium Storage[J]. Electrochemistry Communications, 2007, 9(5): 941-946.
[8] CHENG H, ZHU J, H JIN, et al. In Situ Initiator-Free Gelation of Highly Concentrated Lithium Bis(fluorosulfonyl)imide-1,3-Dioxolane Solid Polymer Electrolyte for High Performance Lithium-Metal Batteries[J]. Materials Today Energy, 2021, 20:100623.
[9] GEICULESCU O E, YANG J, ZHOU S, et al. Solid Polymer Electrolytes from Polyanionic Lithium Salts Based on the LiTFSI Anion Structure[J]. Journal of The Electrochemical Society, 2004, 151(9): A1363.
[10] APPETECCHI G B, ZANE D, SCROSATI B. PEO-Based Electrolyte Membranes Based on LiBC4O8 Salt[J]. Journal of The Electrochemical Society, 2004, 151(9): A1369.
[11] GUO Y, LI H, ZHAI T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries[J]. Advanced Materials, 2017, 29: 1-25.
[12] LIN DC, LIU YY, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[13] ZHANG Y, ZUO TTT, POPOVIC J, et al. Towards Better Li Metal Anodes: Challenges and Strategies[J]. Materials Today, 2020, 33: 56-74.
[14] CHENG XB, ZHANG R, ZHAO CZ, et al. A Review of Solid Electrolyte Interphases on Lithium Metal Anode[J]. Advanced Science, 2016, 3(3): 1500213.
[15] WONG D H, THELEN J L, FU Y, et al. Nonflammable Perfluoropolyether-Based Electrolytes for Lithium Batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3327-3331.
[16] SONG D, CHO W, LEE J H, et al. Toward Higher Energy Conversion Efficiency for Solid Polymer Electrolyte Dye-Sensitized Solar Cells: Ionic Conductivity and TiO2 Pore-Filling[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1249-1258.
[17] FAN LZ, HE HC, NAN CW, et al. Tailoring Inorganic–Polymer Composites for the Mass Production of Solid-State Batteries[J]. Nature Reviews Materials, 2021, 6: 1003-1019.
[18] ARYA A, SHARMA A L. Polymer Electrolytes for Lithium Ion Batteries: A Critical Study[J]. Ionics, 2017, 23(3): 497-540.
[19] KNAUTH P. Inorganic Solid Li Ion Conductors: An Overview[J]. Solid State Ionics, 2009, 180(14-16): 911-916.
[20] CHEN RJ, QU WJ, GUO X, et al. The Pursuit of Solid-State Electrolytes for Lithium Batteries: from Comprehensive Insight to Emerging Horizons[J]. Materials Horizons, 2016, 3(6): 487-516.
[21] LONG LZ, WANG SJ, XIAO M, et al. Polymer Electrolytes for Lithium Polymer Batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069.
[22] BACHMAN J, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chemical reviews, 2015, 116: 140-162.
[23] GRUNDISH N S, GOODENOUGH J B, KHANI H. Designing Composite Polymer Electrolytes for All-Solid-State Lithium Batteries[J]. Current Opinion in Electrochemistry, 2021, 30: 100828.
[24] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[25] HONG H Y P. Crystal Structure and Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
[26] MARIAPPAN C R, YADA C, ROSCIZNO F, et al. Correlation Between Micro-Structural Properties and Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 Ceramics[J]. Journal of Power Sources, 2011, 196: 6456-6464.
[27] THANGADURAI V, WEPPNER W. Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research[J]. Ionics, 2006, 12(1): 81-92.
[28] INAGUMA Y, ITOH M. Influences of Carrier Concentration and Site Percolation on Lithium Ion Conductivity in Perovskite-Type Oxides[J]. Solid State Ionics, 1996, 86-88: 257-260.
[29] THANGADURAI V, KAACK H, WEPPNER W J F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta)[J]. Journal of the American Chemical Society, 2003, 86(3): 437-440.
[30] KATO Y, S HORI, SAITO T, et al. High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors[J]. Nature Energy, 2016, 1(4): 1-7.
[31] YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal Structure of a Superionic Conductor, Li7P3S11[J]. Solid State Ionics, 2007, 178(15): 1163-1167.
[32] KAMAYA N, HOMMA Ke, YAMAKAWA Y, et al. A Lithium Superionic Conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[33] ZHOU Q, MA J, DONG SM, et al. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries[J]. Advanced Materials, 2019, 31(50): e1902029.
[34] TOMINAGA Y, YAMAZAKI K. Fast Li-Ion Conduction in Poly(ethylene carbonate)-Based Electrolytes and Composites Filled with TiO2 Nanoparticles[J]. Chemical Communications, 2014, 50(34): 4448-4450.
[35] MOTOMATSU J, KODAMA H, TOMINAGA Y, et al. Dielectric Relaxation Behavior of a Poly(ethylene carbonate)-Lithium Bis-(trifluoromethanesulfonyl) Imide Electrolyte[J]. Macromolecular Chemistry and Physics, 2015, 216(15): 1660-1665.
[36] TURNBULL D, COHEN M H. Free‐Volume Model of the Amorphous Phase: Glass Transition[J]. The Journal of Chemical Physics, 1961, 34(1): 120-125.
[37] PAS S J, INGRAM M D, FUNKE K, et al. Free Volume and Conductivity in Polymer Electrolytes[J]. Electrochimica Acta, 2005, 50(19): 3955-3962.
[38] GUDLA H, ZHANG C, BRANDELL D. Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling[J]. Journal of Physical Chemistry B, 2020, 124(37): 8124-8131.
[39] MINDEMARK J, LACEY M J, BRANDELL D, et al. Beyond PEO—Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes[J]. Progress in Polymer Science, 2018, 81: 114-143.
[40] XU HL, XIE JB, LIU ZB, et al. Carbonyl-Coordinating Polymers for High-Voltage Solid-State Lithium Batteries: Solid Polymer Electrolytes[J]. MRS Energy & Sustainability, 2020, 7(1): 1-25.
[41] FENTON D E, PARKER J M, WRIGHT P V. Complexes of Alkali Metal Ions with Poly(ethylene oxide)[J]. Polymer, 1973, 14: 589.
[42] BERTHIER C, GORECKI W, MINIER M, et al. Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-Poly(ethylene oxide) Adducts[J]. Solid State Ionics, 1983, 11(1): 91-95.
[43] SUN B, MINDEMARK J, BRANDELL D, et al. Polycarbonate-Based Solid Polymer Electrolytes for Li-Ion Batteries[J]. Solid State Ionics, 2014, 262: 738-742.
[44] CHEN LH, VENKATRAM S, KIM C, et al. Electrochemical Stability Window of Polymeric Electrolytes[J]. Chemistry of Materials, 2019, 31(12): 4598-4604.
[45] XU K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[46] ERIKSSON T, MINDEMARK J, BRANDELL D, et al. Effects of Nanoparticle Addition to Poly(ε-caprolactone) Electrolytes: Crystallinity, Conductivity and Ambient Temperature Battery Cycling[J]. Electrochimica Acta, 2019, 300: 489-496.
[47] RAVI M, SONG SH, GU KM, et al. Electrical Properties of Biodegradable Poly(ɛ-caprolactone): Lithium Thiocyanate Complexed Polymer Electrolyte Films[J]. Materials Science and Engineering: B, 2015, 195: 74-83.
[48] LIN CK, WU I D. Investigating the Effect of Interaction Behavior on the Ionic Conductivity of Polyester/LiClO4 Blend Systems[J]. Polymer, 2011, 52(18): 4106-4113.
[49] IMHOLT L, DÖRR T S, Zhang P, et al. Grafted Polyrotaxanes as Highly Conductive Electrolytes for Lithium Metal Batteries[J]. Journal of Power Sources, 2019, 409: 148-158.
[50] DUKHANIN G P, DUMLER S A, SABLIN A N, et al. Solid Polymeric Electrolyte Based on Poly(ethylene carbonate)-Lithium Perchlorate System[J]. Russian Journal of Applied Chemistry, 2009, 82(2): 243-246.
[51] TOMINAGA Y, YAMAZAKI K, NANTHANA V. Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-Based Polymer Electrolytes[J]. Journal of The Electrochemical Society, 2015, 162(2): A3133-A3136.
[52] OKUMURA T, NISHIMURA S. Lithium Ion Conductive Properties of Aliphatic Polycarbonate[J]. Solid State Ionics, 2014, 267: 68-73.
[53] SMITH M J, SILVA M M, CERQUEIRA S, et al. Preparation and Characterization of a Lithium Ion Conducting Electrolyte Based on Poly(trimethylene carbonate)[J]. Solid State Ionics, 2001, 140(3): 345-351.
[54] SUN B, MINDEMARK J, BRANDELL D. Realization of High Performance Polycarbonate-Based Li Polymer Batteries[J]. Electrochemistry Communications, 2015, 52: 71-74.
[55] MEABE L, LAGO N, MECERREYES D, et al. Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes[J]. Electrochimica Acta, 2017, 237: 259-266.
[56] ZHANG M, YU S, MAI Y, et al. A Single-Ion Conducting Hyperbranched Polymer as a High Performance Solid-State Electrolyte for Lithium Ion Batteries[J]. Chemical Communications, 2019, 55(47): 6715-6718.
[57] YANG C R, PERNG J T, WANG YY, et al. Conductive Behaviour of Lithium Ions in Polyacrylonitrile[J]. Journal of Power Sources, 1996, 62(1): 89-93.
[58] LI S, WANG YZ, MA LQ, et al. Synthesis of PAN with Adjustable Molecular Weight and Low Polydispersity Index (PDI) Value Via Reverse Atom Transfer Radical Polymerization[J]. Designed Monomers and Polymers, 2019, 22: 180-186.
[59] AROF A K, SHUHAIMI N E A, AMIRUDIN S, et al. Polyacrylonitrile–Lithium Bis(oxalato) Borate Polymer Electrolyte for Electrical Double Layer Capacitors[J]. Polymers for Advanced Technologies, 2014, 25(3): 265-272.
[60] LIN Y, LI J, LAI YQ, et al. A Wider Temperature Range Polymer Electrolyte for All-Solid-State Lithium Ion Batteries[J]. RSC Advances, 2013, 3(27): 10722-10730.
[61] ZHANG ZC, SHERLOCK D, WEST R, et al. Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone with Oligo(oxyethylene) Side Chains: Synthesis and Conductivity[J]. Macromolecules, 2003, 36: 9176-9180.
[62] XUE ZG, HE D, XIE XL. Poly(ethylene oxide)-Based Electrolytes for Lithium-Ion Batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.
[63] WANAKULE N S, PANDAY A, MULLIN SA, et al. Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions[J]. Macromolecules, 2009, 42(15): 5642-5651.
[64] MELCHIORS M, KEUL H, HÖCKER H. Preparation and Properties of Solid Electrolytes on the Basis of Alkali Metal Salts and Poly(2,2-dimethyltrimethylene carbonate)-Block-Poly(ethylene oxide)-Block-Poly(2,2-dimethyltrimethylene carbonate)[J]. Polymer, 1996, 37(9): 1519-1527.
[65] TERAN A A, MULLIN S A, BALSARA N P., et al. Discontinuous Changes in Ionic Conductivity of a Block Copolymer Electrolyte through an Order–Disorder Transition[J]. ACS Macro Letters, 2012, 1(2): 305-309.
[66] YOUNG W S, EPPS T H. Ionic Conductivities of Block Copolymer Electrolytes with Various Conducting Pathways: Sample Preparation and Processing Considerations[J]. Macromolecules, 2012, 45(11): 4689-4697.
[67] JO G, AHN H, PARK M J. Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough[J]. ACS Macro Letters, 2013, 2(11): 990-995.
[68] HAO S M, LIANG S, SEWELL C D, et al. Lithium-Conducting Branched Polymers: New Paradigm of Solid-State Electrolytes for Batteries[J]. Nano Letters, 2021, 21(18): 7435-7447.
[69] ITOH T, FUJITA K, INOUE K, et al. Solid Polymer Electrolytes Based on Alternating Copolymers of Vinyl Ethers with Methoxy Oligo(ethyleneoxy)ethyl Groups and Vinylene Carbonate[J]. Electrochimica Acta, 2013, 112: 221-229.
[70] 张梦.新型固态聚合物电解质的合成及性能研究[D].上海交通大学, 2020.
[71] 杨以霞.聚氧乙烯醚梳型聚合物的合成及其对蒙脱土分散体系稳定性的影响[D].山东大学, 2015.
[72] LI S, JIANG K, WANG J, et al. Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries[J]. Macromolecules, 2019, 52(19): 7234-7243.
[73] YE W, ZAHEER M, LI LW, et al. Hyperbranched PCL/PS Copolymer-Based Solid Polymer Electrolytes Enable Long Cycle Life of Lithium Metal Batteries[J]. Journal of The Electrochemical Society, 2020, 167(11): 110532-110542.
[74] CHEN Y, SHI Y, LIANG YL, et al. Hyperbranched PEO-Based Hyperstar Solid Polymer Electrolytes with Simultaneous Improvement of Ion Transport and Mechanical Strength[J]. ACS Applied Energy Materials, 2019, 2(3): 1608-1615.
[75] CHEN P, LIU X, WANG S, et al. Confining Hyperbranched Star Poly(ethylene oxide)-Based Polymer into a 3D Interpenetrating Network for a High-Performance All-Solid-State Polymer Electrolyte[J]. ACS Appllied Materials Interfaces, 2019, 11(46): 43146-43155.
[76] DEVAUX D, VILLALUENGA I, BALSARA N P, et al. Crosslinked Perfluoropolyether Solid Electrolytes for Lithium Ion Transport[J]. Solid State Ionics, 2017, 310: 71-80.
[77] ELMÉR A M, JANNASCH P. Synthesis and Characterization of Poly(ethylene oxide-co-ethylene carbonate) Macromonomers and Their Use in the Preparation of Crosslinked Polymer Electrolytes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(7): 2195-2205.
[78] WAILKER C N, VERSEK C, TOUMINEN M, et al. Tunable Networks from Thiolene Chemistry for Lithium Ion Conduction[J]. ACS Macro Letters, 2012, 1(6): 737-741.
[79] CHAKMA P, KONKOLEWICZ D. Dynamic Covalent Bonds in Polymeric Materials[J]. Angew Chemie International Edition in English, 2019, 58(29): 9682-9695.
[80] MAI WC, YU QP, HAN CP, et al. Self-Healing Materials for Energy-Storage Devices[J]. Advanced Functional Materials, 2020, 30: 1909912-1909943.
[81] XU JH, DING CDi, CHEN P, et al. Intrinsic Self-Healing Polymers for Advanced Lithium-Based Batteries: Advances and Strategies[J]. Applied Physics Reviews, 2020, 7(3): 031304.
[82] ZHOU BH, HE D, XUE ZG, et al. A Flexible, Self-Healing and Highly Stretchable Polymer Electrolyte Via Quadruple Hydrogen Bonding for Lithium-Ion Batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11725-11733.
[83] JO Y H, SQ LI, ZUO C, et al. Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries[J]. Macromolecules, 2020, 53(3): 1024-1032.
[84] ZUO C, YANG ML, XUE ZG, et al. Cyclophosphazene-Based Hybrid Polymer Electrolytes Obtained Via Epoxy–Amine Reaction for High-Performance All-Solid-State Lithium-Ion Batteries[J]. Journal of Materials Chemistry A, 2019, 7(32): 18871-18879.
[85] ZHAO YB, BAI Y, BAI YP, et al. A Rational Design of Solid Polymer Electrolyte with High Salt Concentration for Lithium Battery[J]. Journal of Power Sources, 2018, 407: 23-30.
[86] XU SG, SUN ZH, SUN CG, et al. Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature[J]. Advanced Functional Materials, 2020, 30(51): 2007172.
[87] MANUEL S A, NAHM K S. Review on Composite Polymer Electrolytes for Lithium Batteries[J]. Polymer, 2006, 47(16): 5952-5964.
[88] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite Polymer Electrolytes for Lithium Batteries[J]. Nature, 1998, 394(6692): 456-458.
[89] WIECZOREK W, ZALEWSKA A, RADUCHA D, et al. Composite Polyether Electrolytes with Lewis Acid Type Additives[J]. The Journal of Physical Chemistry B, 1998, 102(2): 352-360.
[90] LIU W, LIN D, SUN J, et al. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires[J]. ACS Nano, 2016, 10(12): 11407-11413.
[91] LIU W, LEE S W, CUI Y, et al. Enhancing Ionic Conductivity in Composite Polymer Electrolytes with Well-Aligned Ceramic Nanowires[J]. Nature Energy, 2017, 2(5): 1-7.
[92] FU K, GONG YH, HU LB, et al. Flexible, Solid-State, Ion-Conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries[J], Proceedings of National Academy of Science, 2016, 113(26): 7094-7099.
[93] ANGELL C A, LIU C, SANCHEZ E. Rubbery Solid Electrolytes with Dominant Cationic Transport and High Ambient Conductivity[J]. Nature, 1993, 362(6416): 137-139.
[94] LIU WY, YI CJ, LIU JP, et al. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 12931-12940.
[95] WU HP, GAO PY, JIA H, et al. A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31583-31593.
[96] LIU Y, SUN Q, YU P, et al. Effects of High and Low Salt Concentrations in Electrolytes at Lithium-Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method[J]. Journal of Physical Chemistry Letters, 2021, 12(11): 2922-2929.
[97] HENDERSON W A. Crystallization Kinetics of Glyme−LiX and PEO−LiX Polymer Electrolytes[J]. Macromolecules, 2007, 40(14): 4963-4971.
[98] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[99] 何曼君,陈维孝,董西侠.高分子物理[M].第三版.上海:复旦大学出版社, 2007: 259-263.
[100]XU H L, YE W, WANG Q R, et al. An In Situ Photopolymerized Composite Solid Electrolyte from Halloysite Nanotubes and Comb-like Polycaprolactone for High Voltage Lithium Metal Batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9826-9836.
[101]HUANG A, JIANG Y C, NAPIWOCKI B, et al. Fabrication of Poly(ε-caprolactone) Tissue Engineering Scaffolds with Fibrillated and Interconnected Pores Utilizing Microcellular Injection Molding and Polymer Leaching[J]. RSC Advances, 2017, 7(69): 43432-43444.
[102]KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402.
[103]WU JY, RAO ZX, CHENG ZX, et al. Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries[J]. Advanced Energy Materials, 2019, 9(46): 1902767.
[104]CHEN L, FAN LZ. Dendrite-Free Li Metal Deposition in All-Solid-State Lithium Sulfur Batteries with Polymer-in-Salt Polysiloxane Electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45.
[105]HE ZJ, FAN LiZ. Poly(ethylene carbonate)-Based Electrolytes with High Concentration Li Salt for All-Solid-State Lithium Batteries[J]. Rare Metals, 2018, 37(6): 488-496.
[106]WAN JY, XIE J, KONG X, et al. Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.
[107]HU JK, HE PG, ZHANG BC, et al. Porous Film Host-Derived 3D Composite Polymer Electrolyte for High-Voltage Solid State Lithium Batteries[J]. Energy Storage Materials, 2020, 26: 283-289.
[108]LU Y, ZHAO CZ, ZHANG Q, et al. Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925.
[109]LI H, DU Y F, WU X M, et al. Developing “Polymer‐in‐Salt” High Voltage Electrolyte Based on Composite Lithium Salts for Solid‐State Li Metal Batteries[J]. Advanced Functional Materials, 2021, 31(41):2103049.
[110]ZHANG X, WANG S, XUE C J, et al. Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes[J].Advanced Materials, 2019, 31(11): 1806082.
修改评论