[1] SHEPHERD R F, STOKES A A, NUNES R M D, et al. Soft machines that are resistant to puncture and that self seal[J]. Advanced Materials, 2013, 25(46): 6709-6713.
[2] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1-3): 161-185.
[3] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-455.
[4] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
[5] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035008.
[6] GOUDU S R, YASA I C, HU X H, et al. Biodegradable Untethered Magnetic Hydrogel Milli-Grippers[J]. Advanced Functional Materials, 2020, 30(50): 2004975.
[7] MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in Soft Robotics A Review of the State of the Art[J]. Ieee Robotics & Automation Magazine, 2016, 23(3): 93-106.
[8] AMEND J R, BROWN E, RODENBERG N, et al. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material[J]. Ieee Transactions on Robotics, 2012, 28(2): 341-350.
[9] KIM Y J, CHENG S B, KIM S, et al. Design of a Tubular Snake-like Manipulator with Stiffening Capability by Layer Jamming[J]. 2012 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), 2012: 4251-4256.
[10] SHAN W L, LU T, MAJIDI C. Soft-matter composites with electrically tunable elastic rigidity[J]. Smart Materials and Structures, 2013, 22(8): 085005.
[11] VAN MEERBEEK I M, MAC MURRAY B C, KIM J W, et al. Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self-Healing Soft Machines[J]. Advanced Materials, 2016, 28(14): 2801-2806.
[12] MAVROIDIS C. Development of advanced actuators using shape memory alloys and electrorheological fluids[J]. Research in Nondestructive Evaluation, 2002, 14(1): 1-32.
[13] TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable Stiffness Fiber with Self-Healing Capability[J]. Advanced Materials, 2016, 28(46): 10142-10148.
[14] TAKASHIMA K, SUGITANI K, MORIMOTO N, et al. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire[J]. Smart Materials and Structures, 2014, 23(12): 125005.
[15] YANG Y, CHEN Y H, WEI Y, et al. Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers[J]. Journal of Mechanisms and Robotics-Transactions of the Asme, 2016, 8(6): 061010.
[16] YANG Y, CHEN Y, LI Y, et al. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material[J]. Soft Robot, 2017, 4(2): 147-162.
[17] YANG Y, CHEN Y, LI Y, et al. Novel Variable-Stiffness Robotic Fingers with Built-In Position Feedback[J]. Soft Robot, 2017, 4(4): 338-352.
[18] XIE T. Recent advances in polymer shape memory[J]. Polymer, 2011, 52(22): 4985-5000.
[19] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13): 131901.
[20] GE Q, DUNN C K, QI H J, et al. Active origami by 4D printing[J]. Smart Materials and Structures, 2014, 23(9): 094007.
[21] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D Printing with Tailorable Shape Memory Polymers[J]. Scientific Reports, 2016, 6(1): 31110.
[22] MAJIDI C, WOOD R J. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field[J]. Applied Physics Letters, 2010, 97(16): 164104.
[23] CHENG N G, GOPINATH A, WANG L F, et al. Thermally Tunable, Self-Healing Composites for Soft Robotic Applications[J]. Macromolecular Materials and Engineering, 2014, 299(11): 1279-1284.
[24] ZHANG Y F, ZHANG N B, HINGORANI H, et al. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J]. Advanced Functional Materials, 2019, 29(15): 1806698.
[25] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204.
[26] ZHOU L Y, FU J Z, HE Y. A Review of 3D Printing Technologies for Soft Polymer Materials[J]. Advanced Functional Materials, 2020, 30(28)
[27] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials, 2006, 16(17): 2193-2204.
[28] HRYNEVICH A, ELCI B S, HAIGH J N, et al. Dimension-Based Design of Melt Electrowritten Scaffolds[J]. Small, 2018, 14(22): e1800232.
[29] KINSTLINGER I S, BASTIAN A, PAULSEN S J, et al. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone[J]. Plos One, 2016, 11(2): e0147399.
[30] BERNAL P N, DELROT P, LOTERIE D, et al. Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds[J]. Advanced Materials, 2019, 31(42): e1904209.
[31] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431): 1075-1079.
[32] ROMAGNOLI M, GUALTIERI M L, CANNIO M, et al. Preparation of an aqueous graphitic ink for thermal drop-on-demand inkjet printing[J]. Materials Chemistry and Physics, 2016, 182: 263-271.
[33] 陈小文, 李建雄, 刘安华. 快速成型技术及光固化树脂研究进展[J]. 激光杂志, 2011, 32(03): 1-3.
[34] 皮阳雪, 陈显颂, 陈景文, 等. LED光固化油墨的组分研究及适配光源的选用[J]. 丝网印刷, 2016(01): 30-33.
[35] BEHROODI E, LATIFI H, NAJAFI F. A compact LED-based projection microstereolithography for producing 3D microstructures[J]. Scientific Reports, 2019, 9(1): 19692.
[36] HAN D, LU Z C, CHESTER S A, et al. Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography[J]. Scientific Reports, 2018, 8(1): 1963.
[37] SUN C, FANG N, WU D M, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators a-Physical, 2005, 121(1): 113-120.
[38] SHI L, ZHU T X, GAO G X, et al. Highly stretchable and transparent ionic conducting elastomers[J]. Nature Communications, 2018, 9(1): 2630.
[39] SHI L, JIA K, GAO Y, et al. Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance[J]. Research (Wash D C), 2020, 2020: 2505619.
[40] ZHANG B, LI H G, CHENG J X, et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing[J]. Advanced Materials, 2021, 33(27): 2101298.
[41] YUAN C, WANG T J, DUNN M L, et al. 3D Printed Active Origami with Complicated Folding Patterns[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3): 281-289.
[42] YUAN C, MU X M, DUNN C K, et al. Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures[J]. Advanced Functional Materials, 2018, 28(18): 1705727.
修改评论