中文版 | English
题名

数字光处理3D打印技术制备的基于形状记忆聚合物的变刚度软体执行器

姓名
姓名拼音
WEI Xinfeng
学号
11930366
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
葛锜
导师单位
机械与能源工程系
论文答辩日期
2022-05-09
论文提交日期
2022-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

软体执行器因其优异的环境适应能力和人机交互能力受到研究者们的青睐,然而依靠单一本征柔性材料所制备的执行器难以应用在需要较大载荷的环境当中。变刚度执行器因保留了软体执行器环境适应能力的同时具备了相应的变刚度能力从而可以完成相当的负载任务。形状记忆聚合物(SMP)因其在温度升高时会由玻璃态转变为橡胶态,模量可以实现较大跨度变换,正是这一特点使得其具备天然的变刚度属性,并且近些年来基于丙烯酸体系的SMP材料具有良好的可3D打印特性使得SMP材料成为变刚度方法中最具有潜力的解决方法之一。

近些年来,基于SMP材料制备的变刚度执行器,大多使用材料受限的商用材料来制备变刚度执行器,故而存在性能单一且不可调控的缺点。与此同时,众多的变刚度实现方法在追求制备简便与成品稳定程度上具备一定的矛盾性。如果使用简便的注模工艺来制备变刚度层,即会导致成品效果不稳定,同时如果使用较多集成商用打印设备来制备变刚度执行器,虽然可以保证制备的稳定性,但众多研究者们不具备如此高昂的实验条件。本研究尝试寻找一种快速便利且能够稳定的制备出性能较好的变刚度执行器的工艺制备方法。

本研究选择使用便利灵活的数字光处理3D打印技术,通过打印自主配制的性能可调控的光固化材料,并利用打印间隙将发热贴片嵌入其中,进而可以快速集成一体化制备变刚度执行器,后续并引入低熔点合金加强层在提高执行器变刚度能力的同时,进一步加快了变刚度效率。上述较为简便成熟的制备工艺为研究者们优化变刚度执行器的制备提供了一种可能的选择,其中的制备材料的使用、增强材料的选择、结构方面的优化以及加热冷却单元的布局等均可以深入研究改进,故而研究者们可以根据自身需求进行调整改进。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SHEPHERD R F, STOKES A A, NUNES R M D, et al. Soft machines that are resistant to puncture and that self seal[J]. Advanced Materials, 2013, 25(46): 6709-6713.
[2] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1-3): 161-185.
[3] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-455.
[4] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
[5] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035008.
[6] GOUDU S R, YASA I C, HU X H, et al. Biodegradable Untethered Magnetic Hydrogel Milli-Grippers[J]. Advanced Functional Materials, 2020, 30(50): 2004975.
[7] MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in Soft Robotics A Review of the State of the Art[J]. Ieee Robotics & Automation Magazine, 2016, 23(3): 93-106.
[8] AMEND J R, BROWN E, RODENBERG N, et al. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material[J]. Ieee Transactions on Robotics, 2012, 28(2): 341-350.
[9] KIM Y J, CHENG S B, KIM S, et al. Design of a Tubular Snake-like Manipulator with Stiffening Capability by Layer Jamming[J]. 2012 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), 2012: 4251-4256.
[10] SHAN W L, LU T, MAJIDI C. Soft-matter composites with electrically tunable elastic rigidity[J]. Smart Materials and Structures, 2013, 22(8): 085005.
[11] VAN MEERBEEK I M, MAC MURRAY B C, KIM J W, et al. Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self-Healing Soft Machines[J]. Advanced Materials, 2016, 28(14): 2801-2806.
[12] MAVROIDIS C. Development of advanced actuators using shape memory alloys and electrorheological fluids[J]. Research in Nondestructive Evaluation, 2002, 14(1): 1-32.
[13] TONAZZINI A, MINTCHEV S, SCHUBERT B, et al. Variable Stiffness Fiber with Self-Healing Capability[J]. Advanced Materials, 2016, 28(46): 10142-10148.
[14] TAKASHIMA K, SUGITANI K, MORIMOTO N, et al. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire[J]. Smart Materials and Structures, 2014, 23(12): 125005.
[15] YANG Y, CHEN Y H, WEI Y, et al. Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers[J]. Journal of Mechanisms and Robotics-Transactions of the Asme, 2016, 8(6): 061010.
[16] YANG Y, CHEN Y, LI Y, et al. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material[J]. Soft Robot, 2017, 4(2): 147-162.
[17] YANG Y, CHEN Y, LI Y, et al. Novel Variable-Stiffness Robotic Fingers with Built-In Position Feedback[J]. Soft Robot, 2017, 4(4): 338-352.
[18] XIE T. Recent advances in polymer shape memory[J]. Polymer, 2011, 52(22): 4985-5000.
[19] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13): 131901.
[20] GE Q, DUNN C K, QI H J, et al. Active origami by 4D printing[J]. Smart Materials and Structures, 2014, 23(9): 094007.
[21] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D Printing with Tailorable Shape Memory Polymers[J]. Scientific Reports, 2016, 6(1): 31110.
[22] MAJIDI C, WOOD R J. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field[J]. Applied Physics Letters, 2010, 97(16): 164104.
[23] CHENG N G, GOPINATH A, WANG L F, et al. Thermally Tunable, Self-Healing Composites for Soft Robotic Applications[J]. Macromolecular Materials and Engineering, 2014, 299(11): 1279-1284.
[24] ZHANG Y F, ZHANG N B, HINGORANI H, et al. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J]. Advanced Functional Materials, 2019, 29(15): 1806698.
[25] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204.
[26] ZHOU L Y, FU J Z, HE Y. A Review of 3D Printing Technologies for Soft Polymer Materials[J]. Advanced Functional Materials, 2020, 30(28)
[27] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials, 2006, 16(17): 2193-2204.
[28] HRYNEVICH A, ELCI B S, HAIGH J N, et al. Dimension-Based Design of Melt Electrowritten Scaffolds[J]. Small, 2018, 14(22): e1800232.
[29] KINSTLINGER I S, BASTIAN A, PAULSEN S J, et al. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone[J]. Plos One, 2016, 11(2): e0147399.
[30] BERNAL P N, DELROT P, LOTERIE D, et al. Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds[J]. Advanced Materials, 2019, 31(42): e1904209.
[31] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431): 1075-1079.
[32] ROMAGNOLI M, GUALTIERI M L, CANNIO M, et al. Preparation of an aqueous graphitic ink for thermal drop-on-demand inkjet printing[J]. Materials Chemistry and Physics, 2016, 182: 263-271.
[33] 陈小文, 李建雄, 刘安华. 快速成型技术及光固化树脂研究进展[J]. 激光杂志, 2011, 32(03): 1-3.
[34] 皮阳雪, 陈显颂, 陈景文, 等. LED光固化油墨的组分研究及适配光源的选用[J]. 丝网印刷, 2016(01): 30-33.
[35] BEHROODI E, LATIFI H, NAJAFI F. A compact LED-based projection microstereolithography for producing 3D microstructures[J]. Scientific Reports, 2019, 9(1): 19692.
[36] HAN D, LU Z C, CHESTER S A, et al. Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography[J]. Scientific Reports, 2018, 8(1): 1963.
[37] SUN C, FANG N, WU D M, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators a-Physical, 2005, 121(1): 113-120.
[38] SHI L, ZHU T X, GAO G X, et al. Highly stretchable and transparent ionic conducting elastomers[J]. Nature Communications, 2018, 9(1): 2630.
[39] SHI L, JIA K, GAO Y, et al. Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance[J]. Research (Wash D C), 2020, 2020: 2505619.
[40] ZHANG B, LI H G, CHENG J X, et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing[J]. Advanced Materials, 2021, 33(27): 2101298.
[41] YUAN C, WANG T J, DUNN M L, et al. 3D Printed Active Origami with Complicated Folding Patterns[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3): 281-289.
[42] YUAN C, MU X M, DUNN C K, et al. Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures[J]. Advanced Functional Materials, 2018, 28(18): 1705727.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335888
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
韦鑫锋. 数字光处理3D打印技术制备的基于形状记忆聚合物的变刚度软体执行器[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930366-韦鑫锋-机械与能源工程(5239KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韦鑫锋]的文章
百度学术
百度学术中相似的文章
[韦鑫锋]的文章
必应学术
必应学术中相似的文章
[韦鑫锋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。