中文版 | English
题名

应用势流粘性修正模型的双浮体间窄缝共振数值模拟研究

姓名
姓名拼音
CAI Xinchen
学号
12032379
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
冯兴亚
导师单位
海洋科学与工程系
论文答辩日期
2022-05-11
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着时代的发展,海洋工程设备的建设愈发地受到国内外的重视。无论是船舶操作时的旁靠、靠岸等操作,还是海上平台的月池等结构,都会出现窄缝结构。该结构在入射波的侵扰下,当处于特定入射波频率可能出现共振现象,在某些位置会产生较大共振波高以及产生较大的波浪力,对生产安全都有着严重的挑战。该现象称之为窄缝共振现象。现有的针对该现象的模拟研究发现,传统势流模型在面对该情况下相较于准确的粘流模型而言,对响应波高的计算会出现明显的高估情况,这是由于势流模型忽略了流体粘性因素所导致的。但是准确的粘流模型计算速率较低,无法大规模应用在实际的工程设计之中。

根据此窄缝共振现象展开研究,通过弱阻尼理论对全非线性圆形势流模型波浪水池进行粘性修正,针对修正系数的选取提供不同的数值及方案,并探究修正系数对于共振频率处的修正效果。结果表明在针对响应波高进行计算的结果中,修正模型为常数,修正系数选取为0.0092的修正模型得到了最好的拟合性。还探究了模型对波浪力计算的能力,以及探究了双浮体的受力情况我们得到结论,该模型对于双浮体受到的横荡力,在第一模态共振频率处有着较为明显的修正效果,而随着频率的增加,该模型计算的结果会大于势流模型计算结果,并且系统整体的受力也随之增大。

非线性因素在双浮体共振现象中也是不可忽视的因素,探究了该修正模型相较于势流模型的计算结果的修正效果并将其结果与OpenFOAM的粘性流结果比对,发现由于网格密度选取问题,共振频率相较于OpenFOAM的计算结果会发生偏移。并且研究还发现,算例的共振频率随着非线性的增强,逐渐向右偏移最后文章还探究了在不同的非线性条件下,窄缝双浮体结构物的受力情况。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1]Saitoh T, miao G P, Ishida H. Experimental study on resonant phenomena in a narrow gap between two modules of very large floating structure [C]. Proceedings of the International Symposium on Naval Architecture and Ocean Engineering, 2003,39: 1-8.
[2]Kristiansen T, Faltinsen O m. Studies on resonant water motion between a ship and a fixed terminal in shallow water [J]. Journal of Offshore mechanics and Arctic Engineering, 2009, 131(2):1-11.
[3]刘春阳.波浪作用下双浮体系统水动力特性的实验和数值研究[D].硕士学位论文,大连理工大学,2017.
[4]Wang D G, Zou Z L. Study of non-linear wave motions and wave forces on ship sections against vertical quay in a harbor [J]. Ocean Engineering, 2007, 34: 1245-1256.
[5]Buchner B, Dijk A, Wilde J J. Numerical multiple-body simulations of side-by-side mooring to an FPSO [C], Proceedings of the 11th International Offshore and Polar Engineering Conference, 2001, 344-353.
[6]吕海宁,杨建民,张承懿.半潜式超大型浮体的多刚体试验研究[J].船舶工程 2004(5):33-37
[7]molin B, Remy F, Camhi A, Ledoux A. Experimental and numerical study of the gap resonance in-between two rectangular barges [C], Proceedings of the 13th International Congress of the International maritime Association of the mediterranean (ImAm), 2009: 689-696.
[8]Zhao W H, Wolgamot H A, Taylor P H, Taylor R Eatock. Gap resonance and higher harmonics driven by focused transient wave groups [J], Journal of Fluid mechanics, 2017, 812: 905-939.
[9]miao G P, Saitoh T, Ishida H. Water wave interaction of twin large scale caissons with a small gap between [J]. Coastal Engineering Journal, 2001,43(1): 39-58.
[10]Koo B J, Kim m H. Hydrodynamic interactions and relative motions of two floating platforms with mooring lines in side-by-side offloading operation [J]. Applied Ocean Research, 2005,27: 292-310.
[11]Ganesan T S, Sen D. Time domain simulation of side-by-side floating bodies using a 3D numerical wave tank approach [J], Applied Ocean Research, 2016, 58: 189-217.
[12]Choi Y R, Hong S Y. An analysis of hydrodynamic interaction of floating multi-body using higher- order boundary element method [C]. Proceedings of the 12th International Offshore and Polar Engineering Conference, 2002, 304-308.
[13]Hong S Y, Kim J H, Choi Y R. Experimental study on behavior of tandem and side-by-side moored vessels [C]. Proceedings of the 12th International Offshore and Polar Engineering Conference, 2002, 841-847.
[14]Hong S Y, Kim J H, Cho S K, Choi Y R, Kim Y S. Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels [J]. Ocean Engineering, 2005,32: 784-801.
[15]Kashiwagi m, Endo K, Yamaguehi H. Wave drift forces and moments on two ships arranged side by side in waves [J]. Ocean Engineering, 2005, 32(5-6): 529-555.
[16]Li B, Cheng L, Deeks A J, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments [J]. Applied Ocean Research. 2005, 27(4):216-223.
[17]Li B, Cheng L, Deeks AJ, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation [J]. Applied Ocean Research. 2005, 27(4):224-234.
[18]滕斌, 何广华, 李博宁, 程亮. 应用比例边界有限元法求解狭缝对双箱水动力的影响[J]. 海洋工程. 2006, 24(2):29-37.
[19]何广华, 滕斌, 李博宁, 程亮. 应用比例边界有限元法研究波浪与带狭缝三箱作用的共振现象[J]. 水动力学研究与进展: A 辑. 2006, 21(3):418-424.
[20]朱仁传, 朱海荣, 缪国平. 具有小间隙的多浮体系统水动力共振现象 [J]. 上海交通大学学报. 2008, 42(8):1238-1242.
[21]Feng X, Bai W. Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation [J]. Applied Ocean Research, 2015,50:119-129.
[22]Lu L, Cheng L, Teng B, Li Y C. Numerical simulation of hydrodynamic resonance in a narrow gap between twin bodies subjected to water waves [C]. Proceedings of the 18th International Offshore and Polar Engineering Conference, 2008, 114-119.
[23]Lu L, Cheng L, Teng B, Zhao m. Numerical investigation of fluid resonance in two narrow gaps of three identical rectangular structures [J], Applied Ocean Research, 2010,32: 177-190.
[24]Lu L, Chen X B, Teng B. Viscous dissipation and artificial damping fbr gap resonance problem [C]. Proceedings of 10th International Conference on Hydrodynamics, 2012.
[25]Kristiansen T, Faltinsen O m. Application of a vortex tracking method to the piston-like behavior in a semi-entrained vertical gap [J]. Applied Ocean Research, 2008,30,1-16.
[26]Kristiansen T, Faltinsen O m. A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion [J]. Applied Ocean Research, 2010,32: 158-176.
[27]Feng X, Bai W, Chen X B, Qian L, ma Z H. Numerical investigation of viscous effects on the gap resonance between side-by-side barges [J]. Ocean Engineering, 2017,145: 44-58.
[28]魏丹丹, 姜胜超. 不规则波作用下并联双箱水动力共振问题分析[C]. 第十六届 全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集.2021: 1176-1184
[29]徐亮瑜, 杨建民, 李欣. 基于黏性流体的小间距多浮体水动力干扰研究[C]. 第十六届中国海洋 (岸) 工程学术讨论会论文集 (上册), 2013.
[30]Gao J L, He Z W, Zang J, Chen Q, Ding H Y, Wang G. Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions[J]. Ocean Engineering. 2020(206):1-14
[31]Gao J L, He Z W, Zang J, Chen Q, Ding H Y, Wang G. Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions[J]. Ocean Engineering. 2021(224):1-15
[32]Gao J L, He Z W, Zang J, Chen Q, Ding H Y, Wang G. Numerical investigations of gap resonance excited by focused transient wave groups[J]. Ocean Engineering. 2020(212):1-15
[33]Buchner B, Boer G, and Wilde J J. The interaction effects of mooring in close proximity of other structures [C]. The 14th International Offshore and Polar Engineering Conference, 2004,297-306.
[34]Hewman J N. Progress in wave load computations on offshore structures [EB/OL]. Proceedings of the 23th Conference on Offshore mechanics and Arctic Engineering,
[35]Chen X B. Hydrodynamics in offshore and naval applications [C], The 6th International Conference on Hydrodynamics 2004, Keynote lecture.
[36]Pauw W H, Huijsmans R H m, Voogt A. Advanced in the hydrodynamics of side-by-side moored vessels [C]. Proceedings of the 26th Conference on Offshore mechanics and Arctic Engineering, 2007, OmAE2007-29374.
[37]Bunnik T, Pauw W H, Voogt A. Hydrodynamic analysis for side-by-side offloading [C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, 2009, 648-653.
[38]Lu L, Teng B, Cheng L, Sun L, Chen X B. modelling of multi-bodies in close proximity under water waves—Fluid resonance in narrow gaps [J], Science China, 2011, 54(1): 16-25.
[39]Eatock Taylor R, Sun L, Taylor P H. Gap resonances in focused wave groups [C]. Proceedings of 23rd International Workshop on Water Waves and Floating Bodies, 2008.
[40]Liu H X, Chen H L, Zhang L, Zhang W C, Liu m. Quadratic dissipation effect on the moonpool resonance [J], China Ocean Engineering, 2017, 31(6): 665-673.
[41]Liu Y , Li H J.A new semi-analytical solution for gap resonance between twin rectangularboxes [J]. Journal of Engineering for the maritime Environment. 2014,228(1):3-16.
[42]Hong D C, Hong S Y, Nam B W, Hong S W. Comparative numerical study of repulsive drift forces and gap resonances between two vessels floating side-by-side in proximity in head seas using a discontinuous HOBEm and a constant BEm with boundary matching formulation [J]. Ocean Engineering, 2013, 72: 331-343.
[43]Tan L, Lu L, Tang G Q, Cheng L. A dynamic solution for predicting resonant frequency of piston mode fluid oscillation in moonpool/narrow gaps [J]. Journal of Hydrodynamics, 2020, 32(1):54-69.
[44]Dias F, Dyachenko A I, Zakharov V E. Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions [J]. Physics Letters, A, 2008,327(8):1297-1302.
[45]Lamb, Hydrodynamics H, 6th edn[m]. Cambridge University Press, (1932).
[46]Bai W, Feng X. Fully nonlinear analysis of near-trapping phenomenon around an array of cylinders [J]. Applied Ocean Research, 2014(44):71-81.
[47]Feng X, Chen X B, Dias F. A potential flow model with viscous dissipation based on a modified boundary element method [J]. Engineering Analysis with Boundary Elements, 2018,97:1-15.

所在学位评定分委会
海洋科学与工程系
国内图书分类号
TV139.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335890
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
蔡新晨. 应用势流粘性修正模型的双浮体间窄缝共振数值模拟研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032379-蔡新晨-海洋科学与工程(3923KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蔡新晨]的文章
百度学术
百度学术中相似的文章
[蔡新晨]的文章
必应学术
必应学术中相似的文章
[蔡新晨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。