中文版 | English
题名

雄安新区洪灾应急管理

其他题名
FLOOD EMERGENCY MANAGEMENT IN XIONG'AN NEW AREA
姓名
姓名拼音
JIANG Hao
学号
12032355
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
杜二虎
导师单位
环境科学与工程学院
论文答辩日期
2022-05-12
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

洪涝灾害因其发生频率高、影响范围广,对人民群众的生命财产安全和社会经济的良好发展构成了巨大的威胁。随着近年来全球气候的变化,极端天气及其伴生的洪涝灾害的发生频率显著增加。与此同时,世界各国的城市化进程均在不断加快,财富与人口不断向城市聚集,洪涝灾害给城市地区带来的生命财产损失风险相较过去大幅增加。城市雨水与洪涝灾害管理是城市应急管理的重要内容,当前城市尺度雨水和洪涝灾害管理领域的研究重点在于海绵城市建设,涉及应急疏散的相关研究较少。

为丰富城市尺度洪灾应急管理领域的研究成果与分析工具,本研究构建了一个由基于主体的居民应急响应模型和基于MATSim 的交通仿真模型耦合而成的洪灾应急疏散模型。同时以雄安新区为例,在雄安新区的洪灾应急疏散模型中设计了安置点设置、疏散准备时间、疏散路径选择、人口密度设置和道路交通状况五个情景并进行应急疏散仿真模拟。本研究据此探究了不同的应急管理措施、居民出行特征、城市基础设施等因素对雄安新区洪灾应急疏散的影响,以此为雄安新区的洪灾应急管理提供政策建议与决策支持。

为丰富城研究结果显示:在百年一遇洪水背景下,随着雄安新区启用安置点数量的增加,疏散进程总体呈加快趋势,但启用的安置点数量超过3个后疏散进程的加快不再明显。当启用安置点数量大于3时,雄安新区待疏散居民从家出发至到达目标安置点的期望用时约为2.7小时,在疏散指令发布后的12小时内可将超过90%居民疏散至目标安置点。疏散过程中,在时间和空间层面引导待疏散居民合理分流、错峰疏散可以帮助待疏散居民充分利用路网,减少居民疏散至安置点的期望用时,改善道路拥堵状况。在雄安新区当前道路交通状况和人口密度情形下,路网通行能力在应急疏散时已近饱和,将主干道扩容可大幅减少居民疏散至安置点的期望用时,加快疏散进程。未来雄安新区的发展建设可侧重于开发新城区、合理控制人口密度、改善当前道路交通基础设施,以便及时快速的完成应急疏散。

其他摘要

Floods can cause devastating damages to urban infrastructure and property, leading to significant amount of socioeconomic losses and fatalities. In recent years, the frequency and intensity of extreme weather and the associated floods have increased significantly due to changes in climate and land surface. As a result, the risk of life and property loss caused by floods has also increased significantly because of rapid urbanization and population growth in urban areas. During an extreme flood event when it is impractical to construct the necessary infrastructure to resist floods, it is essential for policy makers to develop efficient evacuation plans for individuals to move from the flood zone to safe areas.

In this study, a flood evacuation modeling framework is constructed that couples (1) an agent-based model for modeling residents’ behaviors and responses to flood risk, and (2) a large-scale traffic simulation model, MATSim, for modeling residents’ evacuation processes in a road network. The modeling framework is implemented in the Xiong'an New Area, a large residential area with high flood risk in North China. A scenario analysis approach is applied to assess the region’s evacuation processes under various evacuation scenarios (i.e., shelter arrangements, residents’ evacuation preparation time, route selection choices during evacuation, residential density, and road conditions).

The modeling results show that residents’ evacuation process can be accelerated by increasing the number of evacuation shelters in the Xiong'an New Area. However, this effect is not noticeable if the number of shelters is larger than three. If there are three shelters in the area, , the average evacuation time for people moving from their homes to the target shelter is about 2.76 hours, and more than 90% of the people can evacuate to the shelter within 12 hours after the evacuation warning is issued to the public. During evacuation process, guiding the residents to evacuate in several sequential groups, rather than in one group, can make full use of road capacity, reduce the traffic congestion, and improve the region’s evacuation processes. The modeling results also show that residents’ evacuation processes are greatly constrained by the limited traffic capacity in the Xiong’an New Area. Expanding the traffic capacity in the main road of the area can greatly reduce evacuation times. Therefore, the future development of the Xiong’an New Area should focus on improving the current traffic infrastructure and/or to reduce the population density, which can enable a more rapid and efficient emergency evacuation during extreme flood events.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-05
参考文献列表

[1] 叶明华, 钱程. 上海与纽约洪涝灾害风险比较与管理对策改进[J]. 上海保险, 2021,(10): 26-30.
[2] TELLMAN B, SULLIVAN J, KUHN C, et al. Satellite imaging reveals increasedproportion of population exposed to floods[J]. Nature, 2021, 596: 80-6.
[3] 盛广耀, 廖要明, 扈海波. 气候变化下雄安新区洪涝灾害的风险评估及适应措施[J]. 中国人口·资源与环境, 2020, 30(06): 40-52.
[4] 李国庆, 邢开成, 黄大鹏. 雄安新区社会重构期暴雨洪涝风险的社区分类调适[J].中国人口·资源与环境, 2020, 30(06): 53-63.
[5] FERRANS P, TORRES M N, TEMPRANO J, et al. Sustainable urban drainage system (SUDS) modeling supporting decision-making: A systematic quantitative review[J]. Science of The Total Environment, 2022, 806: 150447.
[6] ZHANG K, CHUI T F M. A comprehensive review of spatial allocation of LID-BMPGI practices: Strategies and optimization tools[J]. Science of The Total Environment, 2018, 621: 915-29.
[7] CHAN F K S, GRIFFITHS J A, HIGGITT D, et al. “Sponge City” in China—Abreakthrough of planning and flood risk management in the urban context[J]. Land Use Policy, 2018, 76: 772-8.
[8] DU E, CAI X, SUN Z, et al. Exploring the role of social media and individualbehaviors in flood evacuation processes: An agent-based modeling approach[J]. WaterResources Research, 2017, 53(11): 9164-80.
[9] TRIPATHY S S, BHATIA U, MOHANTY M, et al. Flood evacuation during pandemic:a multi-objective framework to handle compound hazard[J]. Environmental ResearchLetters, 2021, 16(3): 034034.
[10] BERNARDINI G, QUAGLIARINI E, D'ORAZIO M, et al. Towards the simulation offlood evacuation in urban scenarios: Experiments to estimate human motion speed infloodwaters[J]. Safety Science, 2020, 123: 104563.
[11] KHALILPOURAZARI S, PASANDIDEH S H R. Designing emergency floodevacuation plans using robust optimization and artificial intelligence[J]. Journal ofCombinatorial Optimization, 2021, 41(3): 640-77.
[12] ALONSO VICARIO S, MAZZOLENI M, BHAMIDIPATI S, et al. Unravelling theinfluence of human behaviour on reducing casualties during flood evacuation[J].Hydrological Sciences Journal, 2020, 65(14): 2359-75.
[13] MUSTE M, KIM D, KIM K. A flood-crest forecast prototype for river floods usingonly in-stream measurements[J]. Communications Earth & Environment, 2022, 3(1): 78.
[14] 陈佳艳. 基于疏散准备时间预测的城市居民区人员应急疏散模拟研究[D]. 上海师范大学, 2020.
[15] 刘斐. 防洪疏散路径规划及实时交通流信息驱动的应急疏散规划方法[D]. 华中科技大学, 2019.
[16] 方妮. 基于转移优先级的多目标优化防洪疏散路径规划[D]. 华中科技大学, 2020.
[17] NIAZI M, HUSSAIN A. Agent-based computing from multi-agent systems to agentbased Models: a visual survey[J]. Scientometrics, 2011, 89: 479-99.
[18] SCHELLING T. Dynamic Models of Segregation[J]. J Math Sociol, 1971, 1: 143 -86.
[19] FUJII N. Growing artificial societies: Social science from the bottom up[M].Southern Economic Association. 1996.
[20] SUN R. Cognition and multi-agent interaction: From cognitive modeling to socialsimulation[M]. Cambridge University Press. 2005.
[21] KURVE A, KOTOBI K, KESIDIS G. An agent-based framework for performancemodeling of an optimistic parallel discrete event simulator[J]. Complex Adaptive Systems Modeling, 2013, 1.
[22] NIAZI M. Towards a novel unified framework for developing formal, network andvalidated agent-based simulation models of complex adaptive systems[J]. IEEE SensorsJournal 2011; 11(10): 2479-2480.
[23] NIAZI M A, HUSSAIN A. Cognitive agent-based computing-I: A unified frameworkfor modeling complex adaptive systems using agent-based & complex network-basedmethods[M]. Springer Science & Business Media, 2012.
[24] CAPLAT P, ANAND M, BAUCH C. Symmetric competition causes populationoscillations in an individual-based model of forest dynamics[J]. Ecological Modelling,2008, 211: 491-500.
[25] LIMA F W S, HADZIBEGANOVIC T, STAUFFER D. Evolution of ethnocentrism onundirected and directed Barabási–Albert networks[J]. Physica A: Statistical Mechanicsand its Applications, 2009, 388(24): 4999-5004.
[26] AZIMI M, JAMALI Y, MOFRAD M. Accounting for diffusion in agent based modelsof reaction-diffusion systems with application to cytoskeletal diffusion[J]. PloS one, 2011,6: e25306.
[27] AZIMI M, MOFRAD M. Higher nucleoporin-importinβ affinity at the nuclear basketincreases nucleocytoplasmic import[J]. PloS one, 2013, 8: e81741.
[28] AZIMI M, BULAT E, WEIS K, et al. An agent-based model for mRNA exportthrough the nuclear pore complex[J]. Molecular Biology of the Cell, 2014, 25.
[29] NASRINPOUR H R, FRIESEN M, MCLEOD R. An agent-based model of messagepropagation in the facebook electronic social network[J/OL]. arXiv:161107454 [csSI],2016.
[30] SARKER R, RAY T. Agent based evolutionary approach: An introduction[M]. Springer Nature. 2010: 1-11.
[31] SCHMEDDERS K, JUDD K. Handbook of Computational Economics[M]. NorthHolland. 2006, 3.
[32] PAGE S E. Uncertainty, Difficulty, and Complexity[J]. Journal of Theoretical Politics,2008, 20(2): 115-49.
[33] ASCHWANDEN G, HAEGLER S, HALATSCH J, et al. Evaluation of 3d city modelsusing automatic placed urban agents[C]. CONVR Conference Proceedings, University Of Sydney. 2009.
[34] BROWN D, PAGE S, RIOLO R, et al. Path dependence and the validation of agentbased spatial models of land use[J]. International Journal of Geographical InformationScience, 2005, 19: 153-74.
[35] SANTOS G, AGUIRRE B. A critical review of emergency evacuation simulationmodels[J]. Proceedings NIST Workshop on Building Occupant Movement During FireEmergencies, 2005.
[36] POLUS A, SCHOFER J, USHPIZ A. Pedestrian flow and level of service[J]. Journalof Transportation Engineering-asce - J TRANSP ENG-ASCE, 1983, 109.
[37] 王旭东, 韩燮, 娄岩峰. 大型场馆人员疏散仿真预测的研究[J]. 计算机工程与设计, 2009, 30(02): 455-9.
[38] LäMMEL G, RIESER M, NAGEL K. Bottlenecks and congestion in evacuationscenarios: A microscopic evacuation simulation for large-scale disasters[C]. Springer.2010.
[39] HORNI A, NAGEL K, AXHAUSEN K. The Multi-Agent transport simulation MATSim[M]. Ubiquity Press. 2016.
[40] CHEN T, YING Z Y, SHEN S, et al. Social force model evacuation simulation andanalysis under relative velocity impact[J]. Progress in Natural Science, 2006, 16: 1606-12.
[41] GUEYE S, NDIAYE B, JOSSELIN D, et al. Using mobile phone data for spatialplanning simulation and optimization technologies (SPOT), data for developmentchallenge Senegal[J]. Book of Abstracts: Scientific Papers. 2015, T15: 516-534.
[42] GURRAM S, SIVARAMAN V, APPLE J, et al. Agent-based modeling to simulateroad travel using big data from smartphone GPS: An application to the continental United States[C]. IEEE. 2019, 3553-3562.
[43] 潘海啸, 崔毅. 基于微观仿真出行模型的病毒时空扩散分布与控制[J]. 城市交通, 2020, 18(03): 62-70.
[44] 崔毅, 潘海啸. 基于活动的微观交通仿真研究与交通排放计算[J]. 城市建筑, 2019, 16(16): 104-9+28.
[45] 安连华. 基于 MFD 的拥堵收费控制研究[D]; 山东科技大学, 2018.
[46] 戴剑勇, 席钌姿. 基于多智能体的货物运输调度模型[J]. 南华大学学报(社会科学 版), 2013, 14(06): 57-61.
[47] 高健. 基于居民出行行为的城市多级公交线网时空协调优化理论与方法[D]; 北京交通大学, 2014.
[48] 中国政府网. 河北雄安新区规划纲要[Z]. 2018.
[49] 中国水利水电科学研究院. 洪涝灾情评估标准[Z]. 水利标准. 2012: 16p:A4.
[50] 周成成. 大型活动突发事件下应急避难所选择模型研究[J]. 现代交通技术, 2014, 11(05): 47-9+87.
[51] 刘强, 阮雪景, 吴紹洪. 重大自然灾害应急避难场所选址原则与模型建构[J]. 海洋地质动态, 2010, 26(05): 45-50+4.
[52] CHANTA S, SANGSAWANG O. Shelter-site selection during flood disaster[J].Lecture Notes in Management Science. 2012, 4: 282-288.
[53] OZBAY E, ÇAVUŞ Ö, KARA B. Shelter site location under multi-hazard scenarios[J].Computers & Operations Research, 2019, 106.
[54] SORENSEN J, LINDELL M, BAKER J, et al. Community response to hurricane threat: Estimates of warning issuance time distributions[J]. Weather, Climate, and Society,2020, 12: 837-46.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
X43
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335895
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
蒋浩. 雄安新区洪灾应急管理[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032355-蒋浩-环境科学与工程学(4744KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蒋浩]的文章
百度学术
百度学术中相似的文章
[蒋浩]的文章
必应学术
必应学术中相似的文章
[蒋浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。