中文版 | English
题名

基于深度学习的通信信号调制识别研究

其他题名
MODULATION RECOGNITION OF COMMUNICATION SIGNALS BASED ON DEEP LEARNING
姓名
姓名拼音
LIN Shangao
学号
11930180
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
贡毅
导师单位
电子与电气工程系
论文答辩日期
2022-05-11
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

调制识别是无线通信系统中重要的关键技术,其主要目的在于通过接收到的无线通信信号来判决其调制模式,从而实现对信号的解调和后续处理。调制识别在认知无线电、感知通信、无线电管理、非合作通信等领域有着极其重要的作用。调制识别技术经过了数十年的发展,理论研究日益成熟。近年来,众多研究者对基于深度学习的调制识别方法进行了研究,使调制识别技术可以从基于不同调制模式的信号数据中自主地学习到更深层次的特征表达来提升识别性能。随着第五代移动通信的快速发展和广泛普及,无线通信环境日益复杂。实际通信系统中调制识别技术的性能与噪声干扰密切相关,因此,提高噪声环境下调制识别技术的性能极为重要。

深度学习领域近年来引入了注意力机制以在有限算力的情况下提升深度神经网络的建模能力。由于大多数注意力机制是面向图像、语音或文本所提出的,在解决通信信号领域的问题时缺乏很好的提取信号特征的能力,因此本论文提出一种时频注意力机制,分别学习信号的通道、时间与频率的特征信息,帮助神经网络模型关注于特征中有意义的部分。在此基础上,本论文提出一种基于时频注意力和信号增强的调制识别框架,包含双通道频谱融合模块、信号增强模块和信号识别模块并进行联合学习,以增强对信号特征的建模能力,提高噪声环境下的调制识别性能。本论文在公开数据集上进行了消融实验并证明了所提出的时频注意力机制以及联合学习框架中各模块的有效性,且在不同信噪比下与现有的前沿方法进行了性能的比较,验证了本论文所提出的方法在噪声环境下的调制识别性能。

其他摘要

Modulation recognition is a key technology in the wireless communication systems, and the main purpose is to determine the modulation mode of the received radio signals for signal demodulation and subsequent signal processing. Modulation recognition plays an extremely important role in cognitive radio, cognitive communication, radio management, non-cooperative communication and other fields. Modulation recognition has been developed for decades, and theoretical research has become more and more mature. In recent years, researchers have proposed modulation recognition methods based on deep learning, which can autonomously learn deeper feature expressions from different modulated signals to improve the recognition performance. However, with the rapid development and wide application of fifth-generation mobile communication systems (5G), the wireless communication environments have become complex. In actual communication systems, the modulation recognition performance is related to noise interference. Therefore, it is crucial to improve the recognition performance in noisy environments.

In recent years, attention mechanisms have been introduced in deep learning to improve the modeling ability of deep neural networks for the limited computing power. Most attention mechanisms are proposed for image, speech or text, which lack the ability to extract features of communication signals. This paper proposes a time-frequency attention mechanism, which separately learns the channel, time, and frequency features of communication signals, and leads the network to focus on the meaningful features. Furthermore, this paper proposes a modulation recognition framework based on time-frequency attention and signal enhancement, which includes a dual-channel spectrum fusion module, a signal enhancement module, and a signal recognition module, and performs joint learning to improve the modulation recognition performance in noisy environments. The ablation experiments on public datasets demonstrate the effectiveness of the proposed time-frequency attention mechanism and each module in the joint learning framework. The performance comparison with the existing state-of-the-art methods proves the superior recognition performance of the proposed method in noisy environments.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] O’SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179.
[2] ZENG Y, ZHANG M, HAN F, et al. Spectrum analysis and convolutional neural network forautomatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(3): 929-932.
[3] O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks (EANN).2016.
[4] RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signalclassification with distributed low-cost spectrum sensors[J]. IEEE Transactions on CognitiveCommunications and Networking, 2018, 4(3): 433-445.
[5] ZHANG M, ZENG Y, HAN Z, et al. Automatic modulation recognition using deep learningarchitectures[C]//International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2018.
[6] HANNA S S, DICK C, CABRIC D. Combining deep learning and linear processing formodulation classification and symbol decoding[C]//IEEE Global Communications Conference(GLOBECOM). 2020.
[7] SHANG X, HU H, LI X, et al. Dive into deep learning based automatic modulation classification: A disentangled approach[J]. IEEE Access, 2020, 8: 113271-113284.
[8] HAMEED F, DOBRE O A, POPESCU D C. On the likelihood-based approach to modulationclassification[J]. IEEE Transactions on Wireless Communications, 2009, 8(12): 5884-5892.
[9] ZHENG J, LV Y. Likelihood-based automatic modulation classification in OFDM with indexmodulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8192-8204.
[10] ZHANG J, CABRIC D, WANG F, et al. Cooperative modulation classification for multipathfading channels via expectation-maximization[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6698-6711.
[11] WU H C, SAQUIB M, YUN Z. Novel automatic modulation classification using cumulantfeatures for communications via multipath channels[J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3098-3105.
[12] PUNCHIHEWA A, ZHANG Q, DOBRE O A, et al. On the cyclostationarity of OFDM andsingle carrier linearly digitally modulated signals in time dispersive channels: Theoretical developments and application[J]. IEEE Transactions on Wireless Communications, 2010, 9(8):2588-2599.
[13] SWAMI A, SADLER B M. Hierarchical digital modulation classification using cumulants[J].IEEE Transactions on Communications, 2000, 48(3): 416-429
[14] HONG L. Classification of BPSK and QPSK signals in fading environment using the ICAtechnique[C]//Southeastern Symposium on System Theory (SSST). 2005.
[15] SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEETransactions on Systems, Man, and Cybernetics, 1991, 21(3): 660-674.
[16] Schölkopf B, Tsuda K, Vert J P. Advanced application of support vector machines[M]. MITPress, 2004: 275-275.
[17] LIPPMANN R. An introduction to computing with neural nets[J]. IEEE ASSP Magazine, 1987,4(2): 4-22.
[18] YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detectionin OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 7(1): 114-117.
[19] HE H, WEN C K, JIN S, et al. Model-driven deep learning for MIMO detection[J]. IEEETransactions on Signal Processing, 2020, 68: 1702-1715.
[20] SOLTANIEH N, NOROUZI Y, YANG Y, et al. A review of radio frequency fingerprintingtechniques[J]. IEEE Journal of Radio Frequency Identification, 2020, 4(3): 222-233.
[21] BU K, HE Y, JING X, et al. Adversarial transfer learning for deep learning based automaticmodulation classification[J]. IEEE Signal Processing Letters, 2020, 27: 880-884.
[22] ZHANG F, LUO C, XU J, et al. An efficient deep learning model for automatic modulationrecognition based on parameter estimation and transformation[J]. IEEE Communications Letters, 2021, 25(10): 3287-3290.
[23] O’SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]//GNURadio Conference: volume 1. 2016.
[24] WEST N E, O’SHEA T. Deep architectures for modulation recognition[C]//IEEE InternationalSymposium on Dynamic Spectrum Access Networks (DySPAN). 2017.
[25] WANG Y, GUI G, OHTSUKI T, et al. Multi-task learning for generalized automatic modulationclassification under non-Gaussian noise with varying SNR conditions[J]. IEEE Transactions onWireless Communications, 2021, 20(6): 3587-3596.
[26] ZHANG J, LI Y, YIN J. Modulation classification method for frequency modulation signalsbased on the time–frequency distribution and CNN[J]. IET Radar, Sonar & Navigation, 2017,12(2): 244-249.
[27] LI Z, ZHA X. Modulation recognition based on IQ-eyes diagrams and deep learning[C]//IEEEInternational Conference on Computer and Communications (ICCC). 2019.
[28] XU J, LUO C, PARR G, et al. A spatiotemporal multi-channel learning framework for automaticmodulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629-1632.
[29] HUANG L, ZHANG Y, PAN W, et al. Visualizing deep learning-based radio modulation classifier[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 7(1): 47-58.
[30] LI L, HUANG J, CHENG Q, et al. Automatic modulation recognition: A few-shot learningmethod based on the capsule network[J]. IEEE Wireless Communications Letters, 2020, 10(3):474-477.
[31] WANG Y, GUI G, GACANIN H, et al. Transfer learning for semi-supervised automatic modulation classification in ZF-MIMO systems[J]. IEEE Journal on Emerging and Selected Topicsin Circuits and Systems, 2020, 10(2): 231-239.
[32] HUANG S, LIN C, XU W, et al. Identification of active attacks in internet of things: joint modeland data-driven automatic modulation classification approach[J]. IEEE Internet of Things Journal, 2020, 8(3): 2051-2065.
[33] YU J, HU A, ZHOU F, et al. Radio frequency fingerprint identification based on denoisingautoencoders[C]//International Conference on Wireless and Mobile Computing, Networkingand Communications (WiMob). 2019.
[34] KE Z, VIKALO H. Real-time radio technology and modulation classification via an LSTMauto-encoder[J]. IEEE Transactions on Wireless Communications, 2021.
[35] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedicalimage segmentation[C]//International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI). 2015.
[36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
[37] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to alignand translate[C]//International Conference on Learning Representations (ICLR). 2015.
[38] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inNeural Information Processing Systems, 2017, 30.
[39] LUONG T, PHAM H, MANNING C D. Effective approaches to attention-based neural machinetranslation[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP).2015.
[40] XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visualattention[C]//International Conference on Machine Learning (ICML). 2015.
[41] LU J, XIONG C, PARIKH D, et al. Knowing when to look: Adaptive attention via a visual sentinel for image captioning[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2017.
[42] LIU G, GUO J. Bidirectional LSTM with attention mechanism and convolutional layer for textclassification[J]. Neurocomputing, 2019, 337: 325-338.
[43] LI Y, YANG L, XU B, et al. Improving user attribute classification with text and social networkattention[J]. Cognitive Computation, 2019, 11(4): 459-468.
[44] WANG S, HU L, CAO L, et al. Attention-based transactional context embedding for next-itemrecommendation[C]//AAAI Conference on Artificial Intelligence (AAAI). 2018.
[45] YING H, ZHUANG F, ZHANG F, et al. Sequential recommender system based on hierarchicalattention network[C]//International Joint Conference on Artificial Intelligence (IJCAI). 2018.
[46] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 27.
[47] BRITZ D, GOLDIE A, LUONG M, et al. Massive exploration of neural machine translationarchitectures[J]. CoRR, 2017, abs/1703.03906.
[48] MORITZ N, HORI T, ROUX J L. Semi-supervised speech recognition via graph-based temporalclassification[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). 2021.
[49] ZHAO Y, WANG D. Noisy-reverberant speech enhancement using DenseUNet with timefrequency attention.[C]//Proc. INTERSPEECH 2020. 2020: 3261-3265.
[50] SONG S, LAN C, XING J, et al. An end-to-end spatio-temporal attention model for humanaction recognition from skeleton data[C]//AAAI Conference on Artificial Intelligence (AAAI).2017.
[51] TIAN Y, HU W, JIANG H, et al. Densely connected attentional pyramid residual network forhuman pose estimation[J]. Neurocomputing, 2019, 347: 13-23.
[52] ZHAO A, QI L, LI J, et al. LSTM for diagnosis of neurodegenerative diseases using gait data[C]//Ninth International Conference on Graphic and Image Processing (ICGIP). 2018.
[53] ZHANG P, XUE J, LAN C, et al. Adding attentiveness to the neurons in recurrent neuralnetworks[C]//European Conference on Computer Vision (ECCV). 2018.
[54] SONG K, YAO T, LING Q, et al. Boosting image sentiment analysis with visual attention[J].Neurocomputing, 2018, 312: 218-228.
[55] YAN X, HU S, MAO Y, et al. Deep multi-view learning methods: A review[J]. Neurocomputing, 2021, 448: 106-129.
[56] CHOROWSKI J, BAHDANAU D, CHO K, et al. End-to-end continuous speech recognitionusing attention-based recurrent nn: First results[C]//NIPS 2014 Workshop on Deep Learning,December 2014. 2014.
[57] CHAN W, JAITLY N, LE Q, et al. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[C]//IEEE international Conference on Acoustics,Speech and Signal Processing (ICASSP). 2016.
[58] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid sceneanalysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.
[59] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[J]. Advances inNeural Information Processing Systems, 2014, 27.
[60] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE Conference on ComputerVision and Pattern Recognition (CVPR). 2018: 7132-7141.
[61] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//EuropeanConference on Computer Vision (ECCV). 2018.
[62] ZHANG K, ZHONG G, DONG J, et al. Stock market prediction based on generative adversarialnetwork[J]. Procedia Computer Science, 2019, 147: 400-406.
[63] IERACITANO C, PAVIGLIANITI A, CAMPOLO M, et al. A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 8(1): 64-76.
[64] FAN Z, ZHONG G, LI H. A feature fusion network for multi-modal mesoscale eddy detection[C]//International Conference on Neural Information Processing. Springer, 2020.
[65] LIU X, XIA Y, YU H, et al. Region based parallel hierarchy convolutional neural networkfor automatic facial nerve paralysis evaluation[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering, 2020, 28(10): 2325-2332.
[66] MING Y, MENG X, FAN C, et al. Deep learning for monocular depth estimation: A review[J].Neurocomputing, 2021, 438: 14-33.
[67] XIA Y, YU H, WANG F Y. Accurate and robust eye center localization via fully convolutionalnetworks[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(5): 1127-1138.
[68] GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining blackbox models[J]. ACM Computing Surveys, 2018, 51(5): 1-42.
[69] JAIN S, WALLACE B C. Attention is not explanation[C]//North American Chapter of theAssociation for Computational Linguistics (NAACL). 2019.
[70] SERRANO S, SMITH N A. Is attention interpretable?[C]//Annual Meeting of the Associationfor Computational Linguistics (ACL). 2019.
[71] LI L H, YATSKAR M, YIN D, et al. What does BERT with vision look at?[C]//Annual Meetingof the Association for Computational Linguistics (ACL). 2020.
[72] LETARTE G, PARADIS F, GIGUÈRE P, et al. Importance of self-attention for sentiment analysis[C]//Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and InterpretingNeural Networks for NLP. 2018: 267-275.
[73] VASHISHTH S, UPADHYAY S, TOMAR G S, et al. Attention interpretability across NLPtasks[J]. CoRR, 2019, abs/1909.11218.
[74] WIEGREFFE S, PINTER Y. Attention is not not explanation[C]//Proceedings of the 2019Conference on Empirical Methods in Natural Language Processing and the 9th InternationalJoint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019: 11-20.
[75] O’SHEA T J, PEMULA L, BATRA D, et al. Radio transformer networks: Attention models forlearning to synchronize in wireless systems[C]//Asilomar Conference on Signals, Systems andComputers. 2016.
[76] LIANG Z, TAO M, WANG L, et al. Automatic modulation recognition based on adaptiveattention mechanism and ResNeXt WSL Model[J]. IEEE Communications Letters, 2021.
[77] KEHTARNAVAZ N. Frequency domain processing[M]//KEHTARNAVAZ N. Digital SignalProcessing System Design (Second Edition). Burlington: Academic Press, 2008: 175-196.
[78] HEARN G E, METCALFE A V. 12 - Hull roughness and ship resistance[M]//HEARN G E,METCALFE A V. Spectral Analysis in Engineering. Oxford: Butterworth-Heinemann, 1995:261-273.
[79] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//InternationalConference on Artificial Intelligence and Statistics (AISTATS). 2011.
[80] RENSINK R A. The dynamic representation of scenes[J]. Visual Cognition, 2000, 7(1-3):17-42.
[81] CORBETTA M, SHULMAN G L. Control of goal-directed and stimulus-driven attention in thebrain[J]. Nature Reviews Neuroscience, 2002, 3(3): 201-215.
[82] TSOTSOS J K, CULHANE S M, WAI W Y K, et al. Modeling visual attention via selectivetuning[J]. Artificial Intelligence, 1995, 78(1-2): 507-545.
[83] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997, 9(8): 1735-1780.
[84] CHO K, VAN MERRIENBOER B, GÜLÇEHRE Ç, et al. Learning phrase representations usingRNN encoder-decoder for statistical machine translation[C]//Conference on Empirical Methodsin Natural Language Processing (EMNLP). 2014.
[85] 农元君, 王俊杰, 等. 基于注意力和强化学习的遥感图像描述方法[J]. 光学学报, 2021, 41(22): 2228001.
[86] LONG S, TU C, LIU Z, et al. Automatic judgment prediction via legal reading comprehension[C]//China National Conference on Chinese Computational Linguistics. 2019.
[87] MI H, WANG Z, ITTYCHERIAH A. Supervised attentions for neural machine translation[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP). 2016.
[88] LIU L, UTIYAMA M, FINCH A, et al. Neural machine translation with supervised attention[C]//International Conference on Computational Linguistics (COLING). 2016.
[89] ZHAO S, ZHANG Z. Attention-via-attention neural machine translation[C]//AAAI Conferenceon Artificial Intelligence (AAAI). 2018.
[90] YANG B, TU Z, WONG D F, et al. Modeling localness for self-attention networks[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP). 2018.
[91] WANG S I, MANNING C D. Baselines and bigrams: Simple, good sentiment and topic classification[C]//Annual Meeting of the Association for Computational Linguistics (ACL). 2012.
[92] MAAS A, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]//Annual Meeting of the Association for Computational Linguistics (ACL). 2011.
[93] PANG B, LEE L, et al. Opinion mining and sentiment analysis[J]. Foundations and Trends®in Information Retrieval, 2008, 2(1–2): 1-135.
[94] SAHAMI M, DUMAIS S, HECKERMAN D, et al. A Bayesian approach to filtering junk e-mail[C]//Learning for Text Categorization: Papers from the 1998 workshop: volume 62. Citeseer,1998: 98-105.
[95] LIN Z, FENG M, DOS SANTOS C N, et al. A structured self-attentive sentence embedding[C]//International Conference on Learning Representations (ICLR). 2017.
[96] SHEN T, ZHOU T, LONG G, et al. Disan: Directional self-attention network for RNN/CNNfree language understanding[C]//AAAI Conference on Artificial Intelligence (AAAI). 2018.
[97] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//North American Chapter of the Association for Computational Linguistics (NAACL).2016.
[98] SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. CoRR, 2019, abs/1902.09314.
[99] AMBARTSOUMIAN A, POPOWICH F. Self-attention: A better building block for sentimentanalysis neural network classifiers[C]//Workshop on Computational Approaches to Subjectivityand Sentiment Analysis. 2018.
[100] TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP). 2016.
[101] ZHU P, QIAN T. Enhanced aspect level sentiment classification with auxiliary memory[C]//International Conference on Computational Linguistics (COLING). 2018.
[102] SUKHBAATAR S, WESTON J, FERGUS R, et al. End-to-end memory networks[J]. Advancesin Neural Information Processing Systems, 2015, 28.
[103] CUI Y, CHEN Z, WEI S, et al. Attention-over-attention neural networks for reading comprehension[C]//Annual Meeting of the Association for Computational Linguistics (ACL). 2017.
[104] WANG B, LIU K, ZHAO J. Inner attention based recurrent neural networks for answer selection[C]//Annual Meeting of the Association for Computational Linguistics (ACL). 2016.
[105] KIM Y, DENTON C, HOANG L, et al. Structured attention networks[C]//International Conference on Learning Representations (ICLR). 2017.
[106] TAY Y, LUU A T, HUI S C. Hermitian co-attention networks for text matching in asymmetricaldomains[C]//International Joint Conference on Artificial Intelligence (IJCAI). 2018.
[107] LU J, YANG J, BATRA D, et al. Hierarchical question-image co-attention for visual questionanswering[J]. Advances in Neural Information Processing Systems, 2016, 29.
[108] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations invector space[C]//International Conference on Learning Representations (ICLR). 2013.
[109] PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.
[110] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//North American Chapter of the Association for Computational Linguistics (NAACL). 2018.
[111] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformersfor language understanding[C]//North American Chapter of the Association for ComputationalLinguistics (NAACL). 2019.
[112] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understandingby generative pre-training[Z]. 2018.
[113] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.
[114] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advancesin Neural Information Processing Systems, 2020, 33: 1877-1901.
[115] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[J].Advances in Neural Information Processing Systems, 2015, 28.
[116] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE Conference on ComputerVision and Pattern Recognition (CVPR). 2018.
[117] LI X, WANG W, HU X, et al. Selective kernel networks[C]//IEEE Conference on ComputerVision and Pattern Recognition (CVPR). 2019.
[118] STOLLENGA M F, MASCI J, GOMEZ F, et al. Deep networks with internal selective attentionthrough feedback connections[J]. Advances in Neural Information Processing Systems, 2014,27.
[119] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR). 2018.
[120] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR). 2019.
[121] CAO Y, XU J, LIN S, et al. Gcnet: Non-local networks meet squeeze-excitation networksand beyond[C]//International Conference on Computer Vision Workshops (ICCV Workshops).2019.
[122] WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
[123] HUANG Z, WANG X, HUANG L, et al. Ccnet: Criss-cross attention for semantic segmentation[C]//International Conference on Computer Vision (ICCV). 2019.
[124] BISHOP C M. Pattern recognition[J]. Machine Learning, 2006, 128(9).
[125] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//InternationalConference on Learning Representations (ICLR). 2016.
[126] HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]//International Workshop on Artificial Neural Networks. 1995.
[127] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//International Conference on Learning Representations (ICLR). 2016.
[128] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//International Conferenceon Learning Representations (ICLR). 2015.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TM911.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335896
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
林上奥. 基于深度学习的通信信号调制识别研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930180-林上奥-电子与电气工程(4009KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林上奥]的文章
百度学术
百度学术中相似的文章
[林上奥]的文章
必应学术
必应学术中相似的文章
[林上奥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。