中文版 | English
题名

哺乳动物大脑参与体温调节神经元脑区分布的研究

姓名
姓名拼音
LI Xueqing
学号
11930157
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
宋昆
导师单位
生物系
论文答辩日期
2022-05-06
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

核心体温稳定是恒温哺乳动物的重要特征之一,维持核心体温在极小的范围
内波动需要神经系统的精密调节。此前的研究已经指出 POA 区是中枢神经系统
中的体温调节中枢,且 PVN、 LPB 等脑区在体温调节环路中起到重要作用,但对
温度刺激下全脑激活神经元的普查性研究较少。本研究的目的是建立全脑范围内
被温度刺激激活神经元的图谱。研究以小鼠作为模式生物,利用气候箱分别施加
4℃的冷刺激、 37℃的热刺激,同时设置 25℃的室温对照组。通过对小鼠全脑切
片进行 c-Fos 染色的方法识别在冷、热环境刺激下神经元的激活情况,建立全脑
受冷、热刺激激活的神经元的图谱;在此基础上对不同脑区的 c-Fos 阳性细胞总
数进行半定量分析,识别对不同温度刺激敏感的候选大脑区域。实验中统计了 13
个脑区、 2 个亚区中的 c-Fos 阳性细胞数量,将不同温度刺激下的统计结果与室温
对照组的结果进行比对、统计分析。 显著性分析结果表明,有 8 个脑区中的神经
元既对冷刺激敏感,又对热刺激敏感;有 3 个脑区中的神经元只对热刺激敏感,
而冷刺激不引起这几个脑区中神经元的显著激活;还有 2 个脑区对冷、热刺激均
不敏感。本研究对不同温度刺激下被激活的神经元进行了全脑范围内的普查,初
步建立了哺乳动物大脑中参与体温调节的神经元的全脑图谱。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] MADDEN C J, MORRISON S F. Central nervous system circuits that control bodytemperature [J]. Neurosci Lett, 2019, 696: 225-32.
[2] MORRISON S F, NAKAMURA K. Central Mechanisms for Thermoregulation [J]. AnnuRev Physiol, 2019, 81: 285-308.
[3] SIEMENS J, KAMM G B. Cellular populations and thermosensing mechanisms of thehypothalamic thermoregulatory center [J]. Pflugers Arch, 2018, 470(5): 809-22.
[4] VARDON F, MROZEK S, GEERAERTS T, et al. Accidental hypothermia in severe trauma[J]. Anaesth Crit Care Pain Med, 2016, 35(5): 355-61.
[5] EVANS S S, REPASKY E A, FISHER D T. Fever and the thermal regulation of immunity:the immune system feels the heat [J]. Nat Rev Immunol, 2015, 15(6): 335-49.
[6] PETRONE P, ASENSIO J A, MARINI C P. Management of accidental hypothermia andcold injury [J]. Curr Probl Surg, 2014, 51(10): 417-31.
[7] CHESHIRE W P, JR. Thermoregulatory disorders and illness related to heat and cold stress[J]. Auton Neurosci, 2016, 196: 91-104.
[8] BROWN D J, BRUGGER H, BOYD J, et al. Accidental hypothermia [J]. N Engl J Med,2012, 367(20): 1930-8.
[9] BRäNDSTRöM H, ERIKSSON A, GIESBRECHT G, et al. Fatal hypothermia: an analysisfrom a sub-arctic region [J]. Int J Circumpolar Health, 2012, 71(0): 1-7.
[10] WALTER E J, CARRARETTO M. The neurological and cognitive consequences ofhyperthermia [J]. Crit Care, 2016, 20(1): 199.
[11] SANTELLI J, SULLIVAN J M, CZARNIK A, et al. Heat illness in the emergencydepartment: keeping your cool [J]. Emerg Med Pract, 2014, 16(8): 1-21; quiz -2.
[12] BERKO J, INGRAM D D, SAHA S, et al. Deaths attributed to heat, cold, and other weatherevents in the United States, 2006-2010 [J]. Natl Health Stat Report, 2014, (76): 1-15.
[13] CLARK W G, LIPTON J M. Drug-related heatstroke [J]. Pharmacol Ther, 1984, 26(3):345-88.
[14] BARTFAI T, CONTI B. Fever [J]. ScientificWorldJournal, 2010, 10: 490-503.
[15] KAWAI T, AKIRA S. Signaling to NF-kappaB by Toll-like receptors [J]. Trends Mol Med,2007, 13(11): 460-9.
[16] SANCHEZ-ALAVEZ M, TABAREAN I V, BEHRENS M M, et al. Ceramide mediates therapid phase of febrile response to IL-1beta [J]. Proc Natl Acad Sci U S A, 2006, 103(8):2904-8.
[17] HANADA R, LEIBBRANDT A, HANADA T, et al. Central control of fever and femalebody temperature by RANKL/RANK [J]. Nature, 2009, 462(7272): 505-9.
[18] TAN C L, KNIGHT Z A. Regulation of Body Temperature by the Nervous System [J].Neuron, 2018, 98(1): 31-48.
[19] NIVEN D J, LEGER C, STELFOX H T, et al. Fever in the critically ill: a review ofepidemiology, immunology, and management [J]. J Intensive Care Med, 2012, 27(5): 290-7.
[20] MORRISON S F. Central control of body temperature [J]. F1000Res, 2016, 5.
[21] SOLINSKI H J, HOON M A. Cells and circuits for thermosensation in mammals [J].Neurosci Lett, 2019, 690: 167-70.
[22] CAMPERO M, BAUMANN T K, BOSTOCK H, et al. Human cutaneous C fibres activatedby cooling, heating and menthol [J]. J Physiol, 2009, 587(Pt 23): 5633-52.
[23] IRIUCHIJIMA J, ZOTTERMAN Y. The specificity of afferent cutaneous C fibres inmammals [J]. Acta Physiol Scand, 1960, 49: 267-78.
[24] BASANTSOVA N Y, STARSHINOVA A A, DORI A, et al. Small-fiber neuropathydefinition, diagnosis, and treatment [J]. Neurol Sci, 2019, 40(7): 1343-50.
[25] LI H. TRP Channel Classification [J]. Adv Exp Med Biol, 2017, 976: 1-8.
[26] WETSEL W C. Sensing hot and cold with TRP channels [J]. Int J Hyperthermia, 2011,27(4): 388-98.
[27] MCKEMY D D, NEUHAUSSER W M, JULIUS D. Identification of a cold receptor revealsa general role for TRP channels in thermosensation [J]. Nature, 2002, 416(6876): 52-8.
[28] PEIER A M, MOQRICH A, HERGARDEN A C, et al. A TRP channel that senses coldstimuli and menthol [J]. Cell, 2002, 108(5): 705-15.
[29] TAJINO K, HOSOKAWA H, MAEGAWA S, et al. Cooling-sensitive TRPM8 is thermostatof skin temperature against cooling [J]. PLoS One, 2011, 6(3): e17504.
[30] REIMúNDEZ A, FERNáNDEZ-PEñA C, GARCíA G, et al. Deletion of the ColdThermoreceptor TRPM8 Increases Heat Loss and Food Intake Leading to Reduced BodyTemperature and Obesity in Mice [J]. J Neurosci, 2018, 38(15): 3643-56.
[31] ALMEIDA M C, HEW-BUTLER T, SORIANO R N, et al. Pharmacological blockade ofthe cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreasesdeep body temperature [J]. J Neurosci, 2012, 32(6): 2086-99.
[32] POGORZALA L A, MISHRA S K, HOON M A. The cellular code for mammalianthermosensation [J]. J Neurosci, 2013, 33(13): 5533-41.
[33] WANG H, SIEMENS J. TRP ion channels in thermosensation, thermoregulation andmetabolism [J]. Temperature (Austin), 2015, 2(2): 178-87.
[34] EGRI C, RUBEN P C. A hot topic: temperature sensitive sodium channelopathies [J].Channels (Austin), 2012, 6(2): 75-85.
[35] BABES A. Ion channels involved in cold detection in mammals: TRP and non-TRPmechanisms [J]. Biophys Rev, 2009, 1(4): 193-200.
[36] ZIMMERMANN K, LEFFLER A, BABES A, et al. Sensory neuron sodium channelNav1.8 is essential for pain at low temperatures [J]. Nature, 2007, 447(7146): 855-8.
[37] SONG K, WANG H, KAMM G B, et al. The TRPM2 channel is a hypothalamic heat sensorthat limits fever and can drive hypothermia [J]. Science, 2016, 353(6306): 1393-8.
[38] GAGNON D, CRANDALL C G. Sweating as a heat loss thermoeffector [J]. Handb ClinNeurol, 2018, 156: 211-32.
[39] SAPER C B, LOEWY A D. Efferent connections of the parabrachial nucleus in the rat [J].Brain Res, 1980, 197(2): 291-317.
[40] MADDEN C J, MORRISON S F. Excitatory amino acid receptors in the dorsomedialhypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue [J]. AmJ Physiol Regul Integr Comp Physiol, 2004, 286(2): R320-5.
[41] CONCEIçãO E P S, MADDEN C J, MORRISON S F. Neurons in the rat ventral lateralpreoptic area are essential for the warm-evoked inhibition of brown adipose tissue andshivering thermogenesis [J]. Acta Physiol (Oxf), 2019, 225(4): e13213.
[42] BRYCHTA R J, CHEN K Y. Cold-induced thermogenesis in humans [J]. Eur J Clin Nutr,2017, 71(3): 345-52.
[43] SAITO M, MATSUSHITA M, YONESHIRO T, et al. Brown Adipose Tissue, Diet-InducedThermogenesis, and Thermogenic Food Ingredients: From Mice to Men [J]. FrontEndocrinol (Lausanne), 2020, 11: 222.
[44] NAKAMURA K, MORRISON S F. Central efferent pathways for cold-defensive andfebrile shivering [J]. J Physiol, 2011, 589(Pt 14): 3641-58.
[45] ALBA B K, CASTELLANI J W, CHARKOUDIAN N. Cold-induced cutaneousvasoconstriction in humans: Function, dysfunction and the distinctly counterproductive [J].Exp Physiol, 2019, 104(8): 1202-14.
[46] FRANCISCO M A, MINSON C T. Cutaneous active vasodilation as a heat lossthermoeffector [J]. Handb Clin Neurol, 2018, 156: 193-209.
[47] JOHNSON J M, MINSON C T, KELLOGG D L, JR. Cutaneous vasodilator andvasoconstrictor mechanisms in temperature regulation [J]. Compr Physiol, 2014, 4(1): 33-89.
[48] GALLO F T, KATCHE C, MORICI J F, et al. Immediate Early Genes, Memory andPsychiatric Disorders: Focus on c-Fos, Egr1 and Arc [J]. Front Behav Neurosci, 2018, 12:79.
[49] HUGHES P, DRAGUNOW M. Induction of immediate-early genes and the control ofneurotransmitter-regulated gene expression within the nervous system [J]. Pharmacol Rev,1995, 47(1): 133-78.
[50] DUCLOT F, KABBAJ M. The Role of Early Growth Response 1 (EGR1) in BrainPlasticity and Neuropsychiatric Disorders [J]. Front Behav Neurosci, 2017, 11: 35.
[51] BAHRAMI S, DRABLøS F. Gene regulation in the immediate-early response process [J].Adv Biol Regul, 2016, 62: 37-49.
[52] DIEKELMANN S, BORN J. The memory function of sleep [J]. Nat Rev Neurosci, 2010,11(2): 114-26.
[53] MANNING C E, WILLIAMS E S, ROBISON A J. Reward Network Immediate Early GeneExpression in Mood Disorders [J]. Front Behav Neurosci, 2017, 11: 77.
[54] BISAGNO V, CADET J L. Expression of immediate early genes in brain reward circuitries:Differential regulation by psychostimulant and opioid drugs [J]. Neurochem Int, 2019, 124:10-8.
[55] HERRERA D G, ROBERTSON H A. Activation of c-fos in the brain [J]. Prog Neurobiol,1996, 50(2-3): 83-107.
[56] CHIU R, BOYLE W J, MEEK J, et al. The c-Fos protein interacts with c-Jun/AP-1 tostimulate transcription of AP-1 responsive genes [J]. Cell, 1988, 54(4): 541-52.
[57] CHRISTY B A, LAU L F, NATHANS D. A gene activated in mouse 3T3 cells by serumgrowth factors encodes a protein with "zinc finger" sequences [J]. Proc Natl Acad Sci U S A,1988, 85(21): 7857-61.
[58] LEMAIRE P, REVELANT O, BRAVO R, et al. Two mouse genes encoding potentialtranscription factors with identical DNA-binding domains are activated by growth factors incultured cells [J]. Proc Natl Acad Sci U S A, 1988, 85(13): 4691-5.
[59] SUKHATME V P, CAO X M, CHANG L C, et al. A zinc finger-encoding gene coregulatedwith c-fos during growth and differentiation, and after cellular depolarization [J]. Cell, 1988,53(1): 37-43.
[60] LI L, CARTER J, GAO X, et al. The neuroplasticity-associated arc gene is a directtranscriptional target of early growth response (Egr) transcription factors [J]. Mol Cell Biol,2005, 25(23): 10286-300.
[61] FUJIMOTO T, TANAKA H, KUMAMARU E, et al. Arc interacts withmicrotubules/microtubule-associated protein 2 and attenuates microtubule-associatedprotein 2 immunoreactivity in the dendrites [J]. J Neurosci Res, 2004, 76(1): 51-63.
[62] STEWARD O, FARRIS S, PIRBHOY P S, et al. Localization and local translation ofArc/Arg3.1 mRNA at synapses: some observations and paradoxes [J]. Front Mol Neurosci,2014, 7: 101.
[63] MOGA D E, CALHOUN M E, CHOWDHURY A, et al. Activity-regulated cytoskeletalassociated protein is localized to recently activated excitatory synapses [J]. Neuroscience,2004, 125(1): 7-11.
[64] IVASHKINA O I, TOROPOVA K A, IVANOV A A, et al. Waves of c-Fos and ArcProteins Expression in Neuronal Populations of the Hippocampus in Response to a SingleEpisode of New Experience [J]. Bull Exp Biol Med, 2016, 160(6): 729-32.
[65] KORB E, FINKBEINER S. Arc in synaptic plasticity: from gene to behavior [J]. TrendsNeurosci, 2011, 34(11): 591-8.
[66] MINATOHARA K, AKIYOSHI M, OKUNO H. Role of Immediate-Early Genes inSynaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace [J]. Front MolNeurosci, 2015, 8: 78.
[67] LYFORD G L, YAMAGATA K, KAUFMANN W E, et al. Arc, a growth factor andactivity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched inneuronal dendrites [J]. Neuron, 1995, 14(2): 433-45.
[68] CAMPILLOS M, DOERKS T, SHAH P K, et al. Computational characterization ofmultiple Gag-like human proteins [J]. Trends Genet, 2006, 22(11): 585-9.
[69] PASTUZYN E D, DAY C E, KEARNS R B, et al. The Neuronal Gene Arc Encodes aRepurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer [J]. Cell,2018, 172(1-2): 275-88.e18.
[70] ASHLEY J, CORDY B, LUCIA D, et al. Retrovirus-like Gag Protein Arc1 Binds RNA andTraffics across Synaptic Boutons [J]. Cell, 2018, 172(1-2): 262-74.e11.
[71] SAGAR S M, SHARP F R, CURRAN T. Expression of c-fos protein in brain: metabolicmapping at the cellular level [J]. Science, 1988, 240(4857): 1328-31.
[72] JOO J Y, SCHAUKOWITCH K, FARBIAK L, et al. Stimulus-specific combinatorialfunctionality of neuronal c-fos enhancers [J]. Nat Neurosci, 2016, 19(1): 75-83.
[73] JAWORSKI J, KALITA K, KNAPSKA E. c-Fos and neuronal plasticity: the aftermath ofKaczmarek's theory [J]. Acta Neurobiol Exp (Wars), 2018, 78(4): 287-96.
[74] MIYASHITA T, KIKUCHI E, HORIUCHI J, et al. Long-Term Memory Engram Cells AreEstablished by c-Fos/CREB Transcriptional Cycling [J]. Cell Rep, 2018, 25(10): 2716-28.e3.
[75] KACZMAREK L. From c-Fos to MMP-9: In control of synaptic plasticity to producehealthy and diseased mind, a personal view [J]. Postepy Biochem, 2018, 64(2): 101-9.
[76] ABARRATEGI A, GAMBERA S, ALFRANCA A, et al. c-Fos induces chondrogenictumor formation in immortalized human mesenchymal progenitor cells [J]. Sci Rep, 2018,8(1): 15615.
[77] BAKIRI L, HAMACHER R, GRAñA O, et al. Liver carcinogenesis by FOS-dependentinflammation and cholesterol dysregulation [J]. J Exp Med, 2017, 214(5): 1387-409.
[78] QU X, YAN X, KONG C, et al. c-Myb promotes growth and metastasis of colorectal cancerthrough c-fos-induced epithelial-mesenchymal transition [J]. Cancer Sci, 2019, 110(10):3183-96.
[79] CHOI H, KIM C, SONG H, et al. Amyloid β-induced elevation of O-GlcNAcylated c-Fospromotes neuronal cell death [J]. Aging Cell, 2019, 18(1): e12872.
[80] LUPPI M, CERRI M, DI CRISTOFORO A, et al. c-Fos expression in the limbic thalamusfollowing thermoregulatory and wake-sleep changes in the rat [J]. Exp Brain Res, 2019,237(6): 1397-407.
[81] BACHTELL R K, TSIVKOVSKAIA N O, RYABININ A E. Identification of temperaturesensitive neural circuits in mice using c-Fos expression mapping [J]. Brain Res, 2003,960(1-2): 157-64.
[82] ZHAO Z D, YANG W Z, GAO C, et al. A hypothalamic circuit that controls bodytemperature [J]. Proc Natl Acad Sci U S A, 2017, 114(8): 2042-7.
[83] DENTICO D, AMICI R, BARACCHI F, et al. c-Fos expression in preoptic nuclei as amarker of sleep rebound in the rat [J]. Eur J Neurosci, 2009, 30(4): 651-61.
[84] HARDING E C, YU X, MIAO A, et al. A Neuronal Hub Binding Sleep Initiation and BodyCooling in Response to a Warm External Stimulus [J]. Curr Biol, 2018, 28(14): 2263-73.e4.
[85] LIMA P M A, CAMPOS H O, FóSCOLO D R C, et al. The time-course ofthermoregulatory responses during treadmill running is associated with running durationdependent hypothalamic neuronal activation in rats [J]. Brain Struct Funct, 2019, 224(8):2775-86.
[86] PAXINOS G. The mouse brain in stereotaxic coordinates [Z]//FRANKLIN K B J,FRANKLIN K B J. San Diego :; Academic Press. 2001
[87] RISOLD P Y, SWANSON L W. Connections of the rat lateral septal complex [J]. Brain ResBrain Res Rev, 1997, 24(2-3): 115-95.
[88] HOWE A G, BLAIR H T. Modulation of lateral septal and dorsomedial striatal neurons byhippocampal sharp-wave ripples, theta rhythm, and running speed [J]. Hippocampus, 2022,32(3): 153-78.
[89] ZHAO X, YANG R, WANG K, et al. Connectivity-based parcellation of the nucleusaccumbens into core and shell portions for stereotactic target localization and alterations ineach NAc subdivision in mTLE patients [J]. Hum Brain Mapp, 2018, 39(3): 1232-45.
[90] MIRó J, GURTUBAY-ANTOLIN A, RIPOLLéS P, et al. Interhemispheric microstructuralconnectivity in bitemporal lobe epilepsy with hippocampal sclerosis [J]. Cortex, 2015, 67:106-21.
[91] WANG J, ZHANG Y, ZHANG H, et al. Nucleus accumbens shell: A potential target fordrug-resistant epilepsy with neuropsychiatric disorders [J]. Epilepsy Res, 2020, 164: 106365.
[92] ROTHHAAS R, CHUNG S. Role of the Preoptic Area in Sleep and Thermoregulation [J].Front Neurosci, 2021, 15: 664781.
[93] SAPER C B, FULLER P M. Wake-sleep circuitry: an overview [J]. Curr Opin Neurobiol,2017, 44: 186-92.
[94] SCAMMELL T E, ARRIGONI E, LIPTON J O. Neural Circuitry of Wakefulness and Sleep[J]. Neuron, 2017, 93(4): 747-65.
[95] BHAVE V M, NECTOW A R. The dorsal raphe nucleus in the control of energy balance [J].Trends Neurosci, 2021, 44(12): 946-60.
[96] CAROLLO A, BALAGTAS J P M, NEOH M J, et al. A Scientometric Approach to Reviewthe Role of the Medial Preoptic Area (MPOA) in Parental Behavior [J]. Brain Sci, 2021,11(3).
[97] PFAFF D W, BAUM M J. Hormone-dependent medial preoptic/lumbar spinalcord/autonomic coordination supporting male sexual behaviors [J]. Mol Cell Endocrinol,2018, 467: 21-30.
[98] GEERLING J C, KIM M, MAHONEY C E, et al. Genetic identity of thermosensory relayneurons in the lateral parabrachial nucleus [J]. Am J Physiol Regul Integr Comp Physiol,2016, 310(1): R41-54.
[99] QIN C, LI J, TANG K. The Paraventricular Nucleus of the Hypothalamus: Development,Function, and Human Diseases [J]. Endocrinology, 2018, 159(9): 3458-72.
[100] NUNN N, WOMACK M, DART C, et al. Function and pharmacology of spinallyprojecting sympathetic pre-autonomic neurones in the paraventricular nucleus of thehypothalamus [J]. Curr Neuropharmacol, 2011, 9(2): 262-77.
[101] FEETHAM C H, O’BRIEN F, BARRETT-JOLLEY R. Ion Channels in the ParaventricularHypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles [J]. Frontiers inPhysiology, 2018, 9(760).
[102] SWANSON L W, SAWCHENKO P E. Hypothalamic integration: organization of theparaventricular and supraoptic nuclei [J]. Annu Rev Neurosci, 1983, 6: 269-324.
[103] KAWAKAMI N, OTUBO A, MAEJIMA S, et al. Variation of pro-vasopressin processingin parvocellular and magnocellular neurons in the paraventricular nucleus of thehypothalamus: Evidence from the vasopressin-related glycopeptide copeptin [J]. J CompNeurol, 2021, 529(7): 1372-90.
[104] SAPER C B, LOWELL B B. The hypothalamus [J]. Curr Biol, 2014, 24(23): R1111-6.
[105] HERMAN J P, NAWREEN N, SMAIL M A, et al. Brain mechanisms of HPA axisregulation: neurocircuitry and feedback in context Richard Kvetnansky lecture [J]. Stress,2020, 23(6): 617-32.
[106] JIANG Z, RAJAMANICKAM S, JUSTICE N J. CRF signaling between neurons in theparaventricular nucleus of the hypothalamus (PVN) coordinates stress responses [J].Neurobiol Stress, 2019, 11: 100192.
[107] HERMAN J P, MCKLVEEN J M, GHOSAL S, et al. Regulation of the HypothalamicPituitary-Adrenocortical Stress Response [J]. Compr Physiol, 2016, 6(2): 603-21.
[108] CHAVES T, FAZEKAS C L, HORVáTH K, et al. Stress Adaptation and the Brainstem withFocus on Corticotropin-Releasing Hormone [J]. Int J Mol Sci, 2021, 22(16).
[109] MYERS B, MCKLVEEN J M, HERMAN J P. Neural Regulation of the Stress Response:The Many Faces of Feedback [J]. Cell Mol Neurobiol, 2012.
[110] KANNAN H, NIIJIMA A, YAMASHITA H. Effects of stimulation of the hypothalamicparaventricular nucleus on blood pressure and renal sympathetic nerve activity [J]. BrainRes Bull, 1988, 20(6): 779-83.
[111] WANG L A, NGUYEN D H, MIFFLIN S W. Corticotropin-releasing hormone projectionsfrom the paraventricular nucleus of the hypothalamus to the nucleus of the solitary tractincrease blood pressure [J]. J Neurophysiol, 2019, 121(2): 602-8.
[112] WANG L A, NGUYEN D H, MIFFLIN S W. CRHR2 (Corticotropin-Releasing HormoneReceptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent HypoxiaInduced Hypertension [J]. Hypertension, 2018, 72(4): 994-1001.
[113] DAVIU N, FüZESI T, ROSENEGGER D G, et al. Paraventricular nucleus CRH neuronsencode stress controllability and regulate defensive behavior selection [J]. Nat Neurosci,2020, 23(3): 398-410.
[114] HSU D T, KIROUAC G J, ZUBIETA J K, et al. Contributions of the paraventricularthalamic nucleus in the regulation of stress, motivation, and mood [J]. Front Behav Neurosci,2014, 8: 73.
[115] LAMOTTE G, SHOUMAN K, BENARROCH E E. Stress and central autonomic network[J]. Auton Neurosci, 2021, 235: 102870.
[116] DAMPNEY R A. Central mechanisms regulating coordinated cardiovascular andrespiratory function during stress and arousal [J]. Am J Physiol Regul Integr Comp Physiol,2015, 309(5): R429-43.
[117] DIMICCO J A, SARKAR S, ZARETSKAIA M V, et al. Stress-induced cardiac stimulationand fever: common hypothalamic origins and brainstem mechanisms [J]. Auton Neurosci,2006, 126-127: 106-19.
[118] FAULL O K, SUBRAMANIAN H H, EZRA M, et al. The midbrain periaqueductal gray asan integrative and interoceptive neural structure for breathing [J]. Neurosci Biobehav Rev,2019, 98: 135-44.
[119] SCHNEEBERGER M, PAROLARI L, DAS BANERJEE T, et al. Regulation of EnergyExpenditure by Brainstem GABA Neurons [J]. Cell, 2019, 178(3): 672-85.e12.
[120] BRUSCHETTA G, JIN S, LIU Z W, et al. MC(4)R Signaling in Dorsal Raphe NucleusControls Feeding, Anxiety, and Depression [J]. Cell Rep, 2020, 33(2): 108267.
[121] NECTOW A R, SCHNEEBERGER M, ZHANG H, et al. Identification of a BrainstemCircuit Controlling Feeding [J]. Cell, 2017, 170(3): 429-42.e11.
[122] NAKAMURA K, MORRISON S F. A thermosensory pathway that controls bodytemperature [J]. Nat Neurosci, 2008, 11(1): 62-71.
[123] DAVERN P J. A role for the lateral parabrachial nucleus in cardiovascular function andfluid homeostasis [J]. Front Physiol, 2014, 5: 436.
[124] MENANI J V, DE LUCA L A, JR., JOHNSON A K. Role of the lateral parabrachialnucleus in the control of sodium appetite [J]. Am J Physiol Regul Integr Comp Physiol,2014, 306(4): R201-10.
[125] LAMMEL S, LIM B K, MALENKA R C. Reward and aversion in a heterogeneousmidbrain dopamine system [J]. Neuropharmacology, 2014, 76 Pt B(0 0): 351-9.
[126] KANEDA K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleuscontributes to the development of cocaine addiction [J]. Eur J Neurosci, 2019, 50(3): 2239-46.
[127] VALENTINO R J, WOOD S K, WEIN A J, et al. The bladder-brain connection: putativerole of corticotropin-releasing factor [J]. Nat Rev Urol, 2011, 8(1): 19-28.
[128] VERSTEGEN A M J, KLYMKO N, ZHU L, et al. Non-Crh Glutamatergic Neurons inBarrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrainand Hypothalamus [J]. Curr Biol, 2019, 29(17): 2775-89.e7.
[129] DESJARDINS C, MARUNIAK J A, BRONSON F H. Social rank in house mice:differentiation revealed by ultraviolet visualization of urinary marking patterns [J]. Science,1973, 182(4115): 939-41.
[130] BENARROCH E E. Locus coeruleus [J]. Cell Tissue Res, 2018, 373(1): 221-32.
[131] BARI B A, CHOKSHI V, SCHMIDT K. Locus coeruleus-norepinephrine: basic functionsand insights into Parkinson's disease [J]. Neural Regen Res, 2020, 15(6): 1006-13.
[132] SZABADI E. Functional neuroanatomy of the central noradrenergic system [J]. JPsychopharmacol, 2013, 27(8): 659-93.
[133] ZERBI V, FLORIOU-SERVOU A, MARKICEVIC M, et al. Rapid Reconfiguration of theFunctional Connectome after Chemogenetic Locus Coeruleus Activation [J]. Neuron, 2019,103(4): 702-18.e5.
[134] TAKEUCHI T, DUSZKIEWICZ A J, SONNEBORN A, et al. Locus coeruleus anddopaminergic consolidation of everyday memory [J]. Nature, 2016, 537(7620): 357-62.
[135] HERNANDEZ E, J M D. Neuroanatomy, Nucleus Vestibular [M]. StatPearls. TreasureIsland (FL); StatPearls PublishingCopyright © 2022, StatPearls Publishing LLC. 2022.
[136] SCHUBERT M C, MIGLIACCIO A A. New advances regarding adaptation of thevestibulo-ocular reflex [J]. J Neurophysiol, 2019, 122(2): 644-58.
[137] KHERADMAND A, ZEE D S. The bedside examination of the vestibulo-ocular reflex(VOR): an update [J]. Rev Neurol (Paris), 2012, 168(10): 710-9.
[138] OLUCHA-BORDONAU F E, ALBERT-GASCó H, ROS-BERNAL F, et al. Modulation offorebrain function by nucleus incertus and relaxin-3/RXFP3 signaling [J]. CNS NeurosciTher, 2018, 24(8): 694-702.
[139] OLUCHA-BORDONAU F E, TERUEL V, BARCIA-GONZáLEZ J, et al. Cytoarchitectureand efferent projections of the nucleus incertus of the rat [J]. J Comp Neurol, 2003, 464(1):62-97.
[140] KUMAR J R, RAJKUMAR R, JAYAKODY T, et al. Relaxin' the brain: a case for targetingthe nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders [J].Br J Pharmacol, 2017, 174(10): 1061-76.
[141] MA S, GUNDLACH A L. Ascending control of arousal and motivation: role of nucleusincertus and its peptide neuromodulators in behavioural responses to stress [J]. JNeuroendocrinol, 2015, 27(6): 457-67.
[142] LU L, REN Y, YU T, et al. Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus [J]. Nat Commun, 2020, 11(1): 262.
[143] MCNAMARA C G, TEJERO-CANTERO Á, TROUCHE S, et al. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence [J]. Nat Neurosci, 2014,17(12): 1658-60.
[144] LISMAN J E, GRACE A A. The hippocampal-VTA loop: controlling the entry ofinformation into long-term memory [J]. Neuron, 2005, 46(5): 703-13.
[145] CHEN S, HE L, HUANG A J Y, et al. A hypothalamic novelty signal modulateshippocampal memory [J]. Nature, 2020, 586(7828): 270-4.

所在学位评定分委会
生物系
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335897
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
李雪晴. 哺乳动物大脑参与体温调节神经元脑区分布的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930157-李雪晴-生物系.pdf(142966KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李雪晴]的文章
百度学术
百度学术中相似的文章
[李雪晴]的文章
必应学术
必应学术中相似的文章
[李雪晴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。