[1] RAMAN C V, KRISHNAN K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-2.
[2] PROCHAZKA M. Surface-enhanced Raman spectroscopy;bioanalytical, biomolecular and medical applications [M]. Cham: Springer International Publishing AG, 2015.
[3] ZHOU Q, MENG G, WU N, et al. Dipping into a drink: basil-seed supported silver nanoparticles as surface-enhanced Raman scattering substrates for toxic molecule detection [J]. Sensors and Actuators B: Chemical, 2016, 223: 447-52.
[4] WU X, LUO L, YANG S, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood [J]. American Chemical Society Applied Materials & Interfaces, 2015, 7(18): 9965-71.
[5] POZZI F, LEONA M. Surface‐enhanced Raman spectroscopy in art and archaeology [J]. Journal of Raman Spectroscopy, 2016, 47(1): 67-77.
[6] NELSON P, ADIMABUA P, WANG A, et al. Surface-enhanced raman spectroscopy for rapid screening of cinnamon essential oils [J]. Applied Spectroscopy, 2020, 74(11): 1341-9.
[7] LIU Z, LI X, TABAKMAN S M, et al. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes [J]. Journal of the American Chemical Society, 2008, 130(41): 13540-1.
[8] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-6.
[9] JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.
[10] PHILPOTT M R. Effect of surface plasmons on transitions in molecules [J]. The Journal of Chemical Physics, 1975, 62(5): 1812-7.
[11] BRONGERSMA M L, KIK P G. Surface plasmon nanophotonics [M]. Springer, 2007.
[12] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons [J]. Physics Reports, 2005, 408(3-4): 131-314.
[13] WILLETS K A, VAN DUYNE R P. Localized surface plasmon resonance spectroscopy and sensing [J]. Annu Rev Phys Chem, 2007, 58: 267-97.
[14] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles [M]. John Wiley & Sons, 2008.
[15] JONES M R, OSBERG K D, MACFARLANE R J, et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures [J]. Chemical Reviews, 2011, 111(6): 3736-827.
[16] MAIER S A. Plasmonics: fundamentals and applications [M]. Springer, 2007.
[17] FERNANDA CARDINAL M, RODRíGUEZ-GONZáLEZ B, ALVAREZ-PUEBLA R A, et al. Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating [J]. The Journal of Physical Chemistry C, 2010, 114(23): 10417-23.
[18] RYCENGA M, HOU K K, COBLEY C M, et al. Probing the surface-enhanced Raman scattering properties of Au–Ag nanocages at two different excitation wavelengths [J]. Physical Chemistry Chemical Physics, 2009, 11(28): 5903-8.
[19] KERKER M, SIIMAN O, BMMM L, et al. Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver [J]. Applied Optics, 1980, 19(19): 3253-5.
[20] KNEIPP K, KNEIPP H. Surface‐enhanced Raman scattering on silver nanoparticles in different aggregation stages [J]. Israel Journal of Chemistry, 2006, 46(3): 299-305.
[21] ZEMAN E J, SCHATZ G C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium [J]. Journal of Physical Chemistry, 1987, 91(3): 634-43.
[22] XU H. Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy [J]. Applied Physics Letters, 2004, 85(24): 5980-2.
[23] XU H, AIZPURUA J, KäLL M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Physical Review E, 2000, 62(3): 4318.
[24] XU H, BJERNELD E J, KäLL M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering [J]. Physical Review Letters, 1999, 83(21): 4357.
[25] XU H, BJERNELD E J, AIZPURUA J, et al. Interparticle coupling effects in surface-enhanced raman scattering; proceedings of the nanoparticles and nanostructured surfaces: novel reporters with Biological Applications, F, 2001 [C]. International Society for Optics and Photonics.
[26] OTTO A, MROZEK I, GRABHORN H, et al. Surface-enhanced Raman scattering [J]. Journal of Physics: Condensed Matter, 1992, 4(5): 1143.
[27] UDAGAWA M, CHOU C-C, HEMMINGER J, et al. Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface [J]. Physical Review B, 1981, 23(12): 6843.
[28] JENSEN L, AIKENS C M, SCHATZ G C. Electronic structure methods for studying surface-enhanced Raman scattering [J]. Chemical Society Reviews, 2008, 37(5): 1061-73.
[29] MORTON S M, JENSEN L. Understanding the molecule− surface chemical coupling in SERS [J]. Journal of the American Chemical Society, 2009, 131(11): 4090-8.
[30] WU D-Y, LI J-F, REN B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews, 2008, 37(5): 1025-41.
[31] OTTO A, BORNEMANN T, ERTüRK Ü, et al. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surface Science, 1989, 210(3): 363-86.
[32] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews, 1998, 27(4): 241-50.
[33] MOSKOVITS M. Surface‐enhanced Raman spectroscopy: a brief retrospective [J]. Journal of Raman Spectroscopy, 2005, 36(6‐7): 485-96.
[34] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. Journal of the american chemical society, 1977, 99(15): 5215-7.
[35] LIAO P, BERGMAN J, CHEMLA D, et al. Surface-enhanced Raman scattering from microlithographic silver particle surfaces [J]. Chemical Physics Letters, 1981, 82(2): 355-9.
[36] KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Physical Review Letters, 1997, 78(9): 1667.
[37] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102-6.
[38] ALEKNAVIČIENĖ I, PABRĖŽA E, TALAIKIS M, et al. Low-cost SERS substrate featuring laser-ablated amorphous nanostructure [J]. Applied Surface Science, 2022, 571: 151248.
[39] BABAEI R, SAVALONI H. Structural characteristics and application of Cu oblique nano-rod thin films for surface-enhanced Raman spectroscopy (SERS) [J]. Applied Physics A, 2021, 127(9): 1-12.
[40] KAUSHIK V, KAGDADA H L, SINGH D K, et al. Enhancement of SERS effect in Graphene-Silver hybrids [J]. Applied Surface Science, 2022, 574: 151724.
[41] ATHIRA K, RANJANA M, BHARATHI M, et al. Aggregation induced, formaldehyde tailored nanowire like networks of Cu and their SERS activity [J]. Chemical Physics Letters, 2020, 748: 137390.
[42] QIU H, XU S, CHEN P, et al. A novel surface-enhanced Raman spectroscopy substrate based on hybrid structure of monolayer graphene and Cu nanoparticles for adenosine detection [J]. Applied Surface Science, 2015, 332: 614-9.
[43] CHEN H-Y, LIN M-H, WANG C-Y, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale [J]. Journal of the American Chemical Society, 2015, 137(42): 13698-705.
[44] KLEINMAN S L, SHARMA B, BLABER M G, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy [J]. Journal of the American Chemical Society, 2013, 135(1): 301-8.
[45] KOWALSKA A A, KAMINSKA A, ADAMKIEWICZ W, et al. Novel highly sensitive Cu‐based SERS platforms for biosensing applications [J]. Journal of Raman Spectroscopy, 2015, 46(5): 428-33.
[46] RAO G, JIAN X, LV W, et al. A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties [J]. Chemical Engineering Journal, 2017, 321: 394-400.
[47] CHEN L Y, YU J S, FUJITA T, et al. Nanoporous copper with tunable nanoporosity for SERS applications [J]. Advanced Functional Materials, 2009, 19(8): 1221-6.
[48] TAN Y, GU J, XU W, et al. Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection [J]. American Chemical Society Applied Materials & Interfaces, 2013, 5(20): 9878-82.
[49] DIZAJGHORBANI-AGHDAM H, MILLER T S, MALEKFAR R, et al. SERS-active Cu nanoparticles on carbon nitride support fabricated using pulsed laser ablation [J]. Nanomaterials, 2019, 9(9): 1223.
[50] HAYASHI S, KOH R, ICHIYAMA Y, et al. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles [J]. Physical Review Letters, 1988, 60(11): 1085.
[51] QUAGLIANO L G. Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering [J]. Journal of the American Chemical Society, 2004, 126(23): 7393-8.
[52] NAIR A K, BHAVITHA K, PERUMBILAVIL S, et al. Multifunctional nitrogen sulfur CO-doped reduced graphene oxide–Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications [J]. Carbon, 2018, 132: 380-93.
[53] YANG S, QIAO Y, HE P, et al. A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst [J]. Energy & Environmental Science, 2017, 10(4): 972-8.
[54] QIAO Y, YI J, WU S, et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage [J]. Joule, 2017, 1(2): 359-70.
[55] ZHAO Z, PANG L, SU Y, et al. Deciphering CO2 reduction reaction mechanism in aprotic Li–CO2 batteries using in situ vibrational spectroscopy coupled with theoretical calculations [J]. American Chemical Society Energy Letters, 2022, 7: 624-31.
[56] LEE F, TSAI M-C, LIN M-H, et al. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide [J]. Journal of Materials Chemistry A, 2017, 5(14): 6708-15.
[57] 杨博文. 习近平新发展理念下碳达峰, 碳中和目标战略实现的系统思维, 经济理路与科学路径 [J]. 经济学家, 2021, 9(9): 5-12.
[58] ODA I, OGASAWARA H, ITO M. Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroreduction studied by infrared reflection absorption spectroscopy and surface-enhanced Raman spectroscopy [J]. Langmuir, 1996, 12(4): 1094-7.
[59] REN D, DENG Y, HANDOKO A, et al. American Chemical Society Catal. 2015, 5, 2814-2821; A [J]. Dutta, M Rahaman, NC Luedi, P Broekmann, American Chemical Society Catal, 2016, 6: 3804-14.
[60] ICHINOHE Y, WADAYAMA T, HATTA A. Electrochemical reduction of CO2 on silver as probed by surface‐enhanced Raman scattering [J]. Journal of Raman Spectroscopy, 1995, 26(5): 335-40.
[61] SCHMITT K G, GEWIRTH A A. In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3, 5-diamino-1, 2, 4-triazole [J]. The Journal of Physical Chemistry C, 2014, 118(31): 17567-76.
[62] DAIYAN R, SAPUTERA W H, MASOOD H, et al. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value‐added chemicals and fuel [J]. Advanced Energy Materials, 2020, 10(11): 1902106.
[63] BIRDJA Y Y, PéREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J]. Nature Energy, 2019, 4(9): 732-45.
[64] KIM Y, PARK S, SHIN S-J, et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction [J]. Energy & Environmental Science, 2020, 13(11): 4301-11.
[65] MA W, XIE S, LIU T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper [J]. Nature Catalysis, 2020, 3(6): 478-87.
[66] GARZA A J, BELL A T, HEAD-GORDON M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products [J]. American Chemical Society Catalysis, 2018, 8(2): 1490-9.
[67] WANG X, DE ARAúJO J F, JU W, et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO CO-feeds on Cu and Cu-tandem electrocatalysts [J]. Nature Nanotechnology, 2019, 14(11): 1063-70.
[68] DONG Q, ZHANG X, HE D, et al. Role of H2O in CO2 electrochemical reduction as studied in a water-in-salt system [J]. American Chemical Society Central Science, 2019, 5(8): 1461-7.
[69] CHENG T, XIAO H, GODDARD W A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K [J]. Proceedings of the National Academy of Sciences, 2017, 114(8): 1795-800.
[70] LI J, WANG Z, MCCALLUM C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction [J]. Nature Catalysis, 2019, 2(12): 1124-31.
[71] YIN J, ZANG Y, YUE C, et al. Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection [J]. Nanoscale, 2015, 7(32): 13495-502.
[72] ZANELLATO G, SCHIAVI P G, ZANONI R, et al. Electrodeposited copper nanocatalysts for CO2 electroreduction: effect of electrodeposition conditions on catalysts’ morphology and selectivity [J]. Energies, 2021, 14(16): 5012.
[73] XIA Y, XIA X, PENG H-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products [J]. Journal of the American Chemical Society, 2015, 137(25): 7947-66.
修改评论