中文版 | English
题名

纳米铜电极的制备及其表面拉曼增强效应研究

姓名
姓名拼音
ZHU Dongyu
学号
12032300
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
卢周广
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

表面增强拉曼光谱(SERS)是一种超灵敏痕量检测技术,在生物和环境分析等领域得到广泛应用。由于可以得到乙烯等二碳化合物还原产品,铜成为最受瞩目的CO2电还原催化剂之一。电催化过程中间体的生成和演化是影响催化剂选择性和活性的最关键因素,但电化学中间体高度活泼、寿命短,很难通过普通的方法捕获和研究。本论文旨在制备具有表面拉曼增强效应的铜电极,为下一步二氧化碳在铜表面的电催化还原过程中间体的捕获和研究打下坚实基础。

首先采用电化学沉积法直接制备铜纳米枝晶SERS电极,为了避免引入有机分子表面钝化层,选用卤素离子对纳米颗粒的形貌和尺寸进行调控。并对铜纳米枝晶的电沉积生长机理进行研究。研究结果表明,溴离子通过抑制铜枝晶的生长从而起到了细化铜晶粒的作用。并且在-1.0 V的沉积电位下,以0.1 M溴离子进行调控所制备的SERS铜电极拉曼增强效果最好,其表面拉曼增强因子可达106

在液相沉淀法合成氢氧化铜纳米片基础上,通过不同还原方法制备SERS铜电极。还原方法包括抗坏血酸还原、硼氢化钠还原、不同电位电化学还原等。研究发现,抗坏血酸还原法得到的铜纳米立方块晶体,存在(220)晶面的择优取向生长,其拉曼增强效果最佳,增强因子大于7×105

本文制备的纳米铜电极具有优异的拉曼增强性能,拉曼增强因子超过106,为下一步利用SERS光谱原位捕捉二氧化碳还原中间产物、研究二氧化碳还原机理奠定了坚实基础。同时发现抗坏血酸具有诱导铜纳米晶粒(220)择优生长的特性,为优化铜纳米晶体的电催化活性开辟了新思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] RAMAN C V, KRISHNAN K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-2.
[2] PROCHAZKA M. Surface-enhanced Raman spectroscopy;bioanalytical, biomolecular and medical applications [M]. Cham: Springer International Publishing AG, 2015.
[3] ZHOU Q, MENG G, WU N, et al. Dipping into a drink: basil-seed supported silver nanoparticles as surface-enhanced Raman scattering substrates for toxic molecule detection [J]. Sensors and Actuators B: Chemical, 2016, 223: 447-52.
[4] WU X, LUO L, YANG S, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood [J]. American Chemical Society Applied Materials & Interfaces, 2015, 7(18): 9965-71.
[5] POZZI F, LEONA M. Surface‐enhanced Raman spectroscopy in art and archaeology [J]. Journal of Raman Spectroscopy, 2016, 47(1): 67-77.
[6] NELSON P, ADIMABUA P, WANG A, et al. Surface-enhanced raman spectroscopy for rapid screening of cinnamon essential oils [J]. Applied Spectroscopy, 2020, 74(11): 1341-9.
[7] LIU Z, LI X, TABAKMAN S M, et al. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes [J]. Journal of the American Chemical Society, 2008, 130(41): 13540-1.
[8] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-6.
[9] JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.
[10] PHILPOTT M R. Effect of surface plasmons on transitions in molecules [J]. The Journal of Chemical Physics, 1975, 62(5): 1812-7.
[11] BRONGERSMA M L, KIK P G. Surface plasmon nanophotonics [M]. Springer, 2007.
[12] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons [J]. Physics Reports, 2005, 408(3-4): 131-314.
[13] WILLETS K A, VAN DUYNE R P. Localized surface plasmon resonance spectroscopy and sensing [J]. Annu Rev Phys Chem, 2007, 58: 267-97.
[14] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles [M]. John Wiley & Sons, 2008.
[15] JONES M R, OSBERG K D, MACFARLANE R J, et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures [J]. Chemical Reviews, 2011, 111(6): 3736-827.
[16] MAIER S A. Plasmonics: fundamentals and applications [M]. Springer, 2007.
[17] FERNANDA CARDINAL M, RODRíGUEZ-GONZáLEZ B, ALVAREZ-PUEBLA R A, et al. Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating [J]. The Journal of Physical Chemistry C, 2010, 114(23): 10417-23.
[18] RYCENGA M, HOU K K, COBLEY C M, et al. Probing the surface-enhanced Raman scattering properties of Au–Ag nanocages at two different excitation wavelengths [J]. Physical Chemistry Chemical Physics, 2009, 11(28): 5903-8.
[19] KERKER M, SIIMAN O, BMMM L, et al. Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver [J]. Applied Optics, 1980, 19(19): 3253-5.
[20] KNEIPP K, KNEIPP H. Surface‐enhanced Raman scattering on silver nanoparticles in different aggregation stages [J]. Israel Journal of Chemistry, 2006, 46(3): 299-305.
[21] ZEMAN E J, SCHATZ G C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium [J]. Journal of Physical Chemistry, 1987, 91(3): 634-43.
[22] XU H. Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy [J]. Applied Physics Letters, 2004, 85(24): 5980-2.
[23] XU H, AIZPURUA J, KäLL M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Physical Review E, 2000, 62(3): 4318.
[24] XU H, BJERNELD E J, KäLL M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering [J]. Physical Review Letters, 1999, 83(21): 4357.
[25] XU H, BJERNELD E J, AIZPURUA J, et al. Interparticle coupling effects in surface-enhanced raman scattering; proceedings of the nanoparticles and nanostructured surfaces: novel reporters with Biological Applications, F, 2001 [C]. International Society for Optics and Photonics.
[26] OTTO A, MROZEK I, GRABHORN H, et al. Surface-enhanced Raman scattering [J]. Journal of Physics: Condensed Matter, 1992, 4(5): 1143.
[27] UDAGAWA M, CHOU C-C, HEMMINGER J, et al. Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface [J]. Physical Review B, 1981, 23(12): 6843.
[28] JENSEN L, AIKENS C M, SCHATZ G C. Electronic structure methods for studying surface-enhanced Raman scattering [J]. Chemical Society Reviews, 2008, 37(5): 1061-73.
[29] MORTON S M, JENSEN L. Understanding the molecule− surface chemical coupling in SERS [J]. Journal of the American Chemical Society, 2009, 131(11): 4090-8.
[30] WU D-Y, LI J-F, REN B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews, 2008, 37(5): 1025-41.
[31] OTTO A, BORNEMANN T, ERTüRK Ü, et al. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surface Science, 1989, 210(3): 363-86.
[32] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews, 1998, 27(4): 241-50.
[33] MOSKOVITS M. Surface‐enhanced Raman spectroscopy: a brief retrospective [J]. Journal of Raman Spectroscopy, 2005, 36(6‐7): 485-96.
[34] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. Journal of the american chemical society, 1977, 99(15): 5215-7.
[35] LIAO P, BERGMAN J, CHEMLA D, et al. Surface-enhanced Raman scattering from microlithographic silver particle surfaces [J]. Chemical Physics Letters, 1981, 82(2): 355-9.
[36] KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Physical Review Letters, 1997, 78(9): 1667.
[37] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102-6.
[38] ALEKNAVIČIENĖ I, PABRĖŽA E, TALAIKIS M, et al. Low-cost SERS substrate featuring laser-ablated amorphous nanostructure [J]. Applied Surface Science, 2022, 571: 151248.
[39] BABAEI R, SAVALONI H. Structural characteristics and application of Cu oblique nano-rod thin films for surface-enhanced Raman spectroscopy (SERS) [J]. Applied Physics A, 2021, 127(9): 1-12.
[40] KAUSHIK V, KAGDADA H L, SINGH D K, et al. Enhancement of SERS effect in Graphene-Silver hybrids [J]. Applied Surface Science, 2022, 574: 151724.
[41] ATHIRA K, RANJANA M, BHARATHI M, et al. Aggregation induced, formaldehyde tailored nanowire like networks of Cu and their SERS activity [J]. Chemical Physics Letters, 2020, 748: 137390.
[42] QIU H, XU S, CHEN P, et al. A novel surface-enhanced Raman spectroscopy substrate based on hybrid structure of monolayer graphene and Cu nanoparticles for adenosine detection [J]. Applied Surface Science, 2015, 332: 614-9.
[43] CHEN H-Y, LIN M-H, WANG C-Y, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale [J]. Journal of the American Chemical Society, 2015, 137(42): 13698-705.
[44] KLEINMAN S L, SHARMA B, BLABER M G, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy [J]. Journal of the American Chemical Society, 2013, 135(1): 301-8.
[45] KOWALSKA A A, KAMINSKA A, ADAMKIEWICZ W, et al. Novel highly sensitive Cu‐based SERS platforms for biosensing applications [J]. Journal of Raman Spectroscopy, 2015, 46(5): 428-33.
[46] RAO G, JIAN X, LV W, et al. A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties [J]. Chemical Engineering Journal, 2017, 321: 394-400.
[47] CHEN L Y, YU J S, FUJITA T, et al. Nanoporous copper with tunable nanoporosity for SERS applications [J]. Advanced Functional Materials, 2009, 19(8): 1221-6.
[48] TAN Y, GU J, XU W, et al. Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection [J]. American Chemical Society Applied Materials & Interfaces, 2013, 5(20): 9878-82.
[49] DIZAJGHORBANI-AGHDAM H, MILLER T S, MALEKFAR R, et al. SERS-active Cu nanoparticles on carbon nitride support fabricated using pulsed laser ablation [J]. Nanomaterials, 2019, 9(9): 1223.
[50] HAYASHI S, KOH R, ICHIYAMA Y, et al. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles [J]. Physical Review Letters, 1988, 60(11): 1085.
[51] QUAGLIANO L G. Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering [J]. Journal of the American Chemical Society, 2004, 126(23): 7393-8.
[52] NAIR A K, BHAVITHA K, PERUMBILAVIL S, et al. Multifunctional nitrogen sulfur CO-doped reduced graphene oxide–Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications [J]. Carbon, 2018, 132: 380-93.
[53] YANG S, QIAO Y, HE P, et al. A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst [J]. Energy & Environmental Science, 2017, 10(4): 972-8.
[54] QIAO Y, YI J, WU S, et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage [J]. Joule, 2017, 1(2): 359-70.
[55] ZHAO Z, PANG L, SU Y, et al. Deciphering CO2 reduction reaction mechanism in aprotic Li–CO2 batteries using in situ vibrational spectroscopy coupled with theoretical calculations [J]. American Chemical Society Energy Letters, 2022, 7: 624-31.
[56] LEE F, TSAI M-C, LIN M-H, et al. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide [J]. Journal of Materials Chemistry A, 2017, 5(14): 6708-15.
[57] 杨博文. 习近平新发展理念下碳达峰, 碳中和目标战略实现的系统思维, 经济理路与科学路径 [J]. 经济学家, 2021, 9(9): 5-12.
[58] ODA I, OGASAWARA H, ITO M. Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroreduction studied by infrared reflection absorption spectroscopy and surface-enhanced Raman spectroscopy [J]. Langmuir, 1996, 12(4): 1094-7.
[59] REN D, DENG Y, HANDOKO A, et al. American Chemical Society Catal. 2015, 5, 2814-2821; A [J]. Dutta, M Rahaman, NC Luedi, P Broekmann, American Chemical Society Catal, 2016, 6: 3804-14.
[60] ICHINOHE Y, WADAYAMA T, HATTA A. Electrochemical reduction of CO2 on silver as probed by surface‐enhanced Raman scattering [J]. Journal of Raman Spectroscopy, 1995, 26(5): 335-40.
[61] SCHMITT K G, GEWIRTH A A. In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3, 5-diamino-1, 2, 4-triazole [J]. The Journal of Physical Chemistry C, 2014, 118(31): 17567-76.
[62] DAIYAN R, SAPUTERA W H, MASOOD H, et al. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value‐added chemicals and fuel [J]. Advanced Energy Materials, 2020, 10(11): 1902106.
[63] BIRDJA Y Y, PéREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J]. Nature Energy, 2019, 4(9): 732-45.
[64] KIM Y, PARK S, SHIN S-J, et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction [J]. Energy & Environmental Science, 2020, 13(11): 4301-11.
[65] MA W, XIE S, LIU T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper [J]. Nature Catalysis, 2020, 3(6): 478-87.
[66] GARZA A J, BELL A T, HEAD-GORDON M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products [J]. American Chemical Society Catalysis, 2018, 8(2): 1490-9.
[67] WANG X, DE ARAúJO J F, JU W, et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO CO-feeds on Cu and Cu-tandem electrocatalysts [J]. Nature Nanotechnology, 2019, 14(11): 1063-70.
[68] DONG Q, ZHANG X, HE D, et al. Role of H2O in CO2 electrochemical reduction as studied in a water-in-salt system [J]. American Chemical Society Central Science, 2019, 5(8): 1461-7.
[69] CHENG T, XIAO H, GODDARD W A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K [J]. Proceedings of the National Academy of Sciences, 2017, 114(8): 1795-800.
[70] LI J, WANG Z, MCCALLUM C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction [J]. Nature Catalysis, 2019, 2(12): 1124-31.
[71] YIN J, ZANG Y, YUE C, et al. Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection [J]. Nanoscale, 2015, 7(32): 13495-502.
[72] ZANELLATO G, SCHIAVI P G, ZANONI R, et al. Electrodeposited copper nanocatalysts for CO2 electroreduction: effect of electrodeposition conditions on catalysts’ morphology and selectivity [J]. Energies, 2021, 14(16): 5012.
[73] XIA Y, XIA X, PENG H-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products [J]. Journal of the American Chemical Society, 2015, 137(25): 7947-66.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB383.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335901
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
朱东钰. 纳米铜电极的制备及其表面拉曼增强效应研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032300-朱东钰-材料科学与工程(4696KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱东钰]的文章
百度学术
百度学术中相似的文章
[朱东钰]的文章
必应学术
必应学术中相似的文章
[朱东钰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。