中文版 | English
题名

聚醚基固态电解质设计及其在锂金属电池中的应用

姓名
姓名拼音
WEN Shujing
学号
11930489
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    锂金属电池由于较高的能量密度受到广泛研究,但锂枝晶生长问题和安全问题限制了锂金属电池的产业化应用。全固态锂金属电池可以提升锂金属电池的安全性,并且能抑制锂枝晶的形成,从而显著的提升锂金属电池的循环性能,拓宽锂金属电池的应用范围。

    本文利用13-二氧五环和三羟甲基丙烷三缩水甘油醚的交联共聚,有效地降低聚合物电解质的结晶度,进而提高电解质的室温离子电导率。再将得到的交联聚合物和功能性聚合物膜复合,制备出12 μm的聚合物-聚合物复合电解质,其在室温下离子电导率高达3.0×10-4 S cm-1,可以实现锂金属电池的室温运行。功能性多孔聚合物膜降低了聚合物固态电解质的厚度,促进了电解质两侧Li3NLiF的形成,使锂离子沉积更均匀,能够抑制锂枝晶的生长。复合电解质在锂对称电池中能循环超过2000 h,极化电压仅为45 mV。在以磷酸铁锂为正极的电池中循环200圈,库伦效率99.85%,容量保持率80%;在以磷酸锰铁锂为正极材料的电池中,在4.25 V的截止电压下,稳定循环超过100圈,容量保持率90%,且库伦效率有98.95%。同时该复合电解质组装全固态锂金属软包电池展现出了优异的柔性和安全性,弯折2000圈后还有较高的容量保持率(>90%),并且在进行弯折、裁切、针刺实验后还能持续为设备供电。

    本文通过交联共聚降低电解质的结晶度,并且通过复合电解质的结构设计制备出超薄固态电解质。本文对开发具有高离子电导率、良好界面相容性,高机械强度的全固态复合电解质有指导意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries, Nature 601(7892) (2022) 217-222.
[2] YANG C, WU Q, XIE W, et al Copper-coordinated cellulose ion conductors for solid-state batteries, Nature 598(7882) (2021) 590-596.
[3] LIANG J, LUO J, SUN Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries, Energy Stor. Mater. 21 (2019) 308-334.
[4] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications, Adv. Energy. Mater. 8(27) (2018) 1800933.
[5] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries, Adv. Mater. 31(50) (2019) e1902029.
[6] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries, Nat. Rev. Mater. 4(5) (2019) 312-330.
[7] ZHANG L, MIAO J, LI J, et al. Halide perovskite materials for energy storage applications, Adv. Funct. Mater. 30(40) (2020) 2003653.
[8] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy. Environ. Sci. 7(2) (2014) 627-631.
[9] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries, Angew. Chem. Int. Ed. 60(12) (2021) 6718-6723.
[10] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy. 1(4) (2016) 16030.
[11] MIAO X, WANG H, SUN R, et al. Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries, Energy. Environ. Sci. 13(11) (2020) 3780-3822.
[12] SHEN Y, ZHANG Y, HAN S, et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes, Joule 2(9) (2018) 1674-1689.
[13] LIU H, CHENG XB, HUANG JQ, et al. Controlling dendrite growth in solid-state electrolytes, ACS Energy Lett. 5(3) (2020) 833-843.
[14] ZHANG H, LI C, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev. 46(3) (2017) 797-815.
[15] XU S, SUN Z, SUN C, et al. Homogeneous and fast ion conduction of PEO‐based solid‐state electrolyte at low temperature, Adv. Funct. Mater. 30(51) (2020) 2007172.
[16] WU H, XU Y, REN X, et al. Polymer‐in‐“quasi‐ionic liquid” electrolytes for high‐voltage lithium metal batteries, Adv. Energy Mater. 9(41) (2019) 1902108.
[17] WANG Z, OUYANG L, LI H, et al. Layer-by-layer assembly of strong thin films with high lithium ion conductance for batteries and beyond, Small 17(32) (2021) e2100954.
[18] LI Z, LI A, ZHANG H, et al. Interfacial engineering for stabilizing polymer electrolytes with 4 V cathodes in lithium metal batteries at elevated temperature, Nano Energy 72 (2020) 104655.
[19] FAN LZ, HU YS, BHATTACHARYYA A J, et al. Succinonitrile as a versatile additive for polymer electrolytes, Adv. Funct. Mater. 17(15) (2007) 2800-2807.
[20] XUE Z, HE D, XIE X, et al. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A 3(38) (2015) 19218-19253.
[21] MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes, Prog. Polym. Sci. 81 (2018) 114-143.
[22] LIU J, SHEN X, ZHOU J, et al. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery, ACS Appl. Mater. Interfaces 11(48) (2019) 45048-45056.
[23] SUN H, XIE X, HUANG Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries, Angew. Chem. Int. Ed. 60(33) (2021) 18335-18343.
[24] NIU YB, YIN YX, WANG WP, et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries, CCS Chemistry 2(1) (2020) 589-597.
[25] MACKANIC D G, MICHAELS W, LEE M, et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte, Adv. Energy Mater. 8(25) (2018) 1800703.
[26] MA M, SHAO F, WEN P, et al. Designing weakly solvating solid main-chain fluoropolymer electrolytes: Synergistically enhancing stability toward Li anodes and high-voltage cathodes, ACS Energy Lett. 6(12) (2021) 4255-4264.
[27] LIU Q, HE YB, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte, Adv. Mater. 29(13) (2017).
[28] LI S, CHEN YM, LIANG W, et al. A superionic conductive, electrochemically stable dual-salt polymer electrolyte, Joule 2(9) (2018) 1838-1856.
[29] FENG Z, LUO Y, LIU H, et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications, Adv. Sci. 8(16) (2021) e2100736.
[30] CHEN B, XU Q, HUANG Z, et al. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery, J. Power Sources 331 (2016) 322-331.
[31] JIA M, WEN P, WANG Z, et al. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite‐free all‐solid‐state batteries, Adv. Funct. Mater. 31(27) (2021) 2101736.
[32] WEI Z, CHEN S, WANG J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery, J. Mater. Chem. A 6(27) (2018) 13438-13447.
[33] PAN Q, BARBASH D, SMITH D M, et al. Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte‐based lithium metal batteries, Adv. Energy Mater. 7(22) (2017) 1701231.
[34] SUN C, WANG Z, YIN L, et al. Fast lithium ion transport in solid polymer electrolytes from polysulfide-bridged copolymers, Nano Energy 75 (2020) 104976.
[35] LIN D, YUEN PY, LIU Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus, Adv. Mater. 30(32) (2018) e1802661.
[36] LIU W, LIN D, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires, ACS Nano 10(12) (2016) 11407-11413.
[37] HE K, CHENG SH, HU J, et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries, Angew. Chem. Int. Ed. 60(21) (2021) 12116-12123.
[38] ZHENG J, HU YY. New Insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes, ACS Appl. Mater. Interfaces 10(4) (2018) 4113-4120.
[39] ZHANG Y, SHI Y, HU XC, et al. A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid‐state batteries, Adv. Energy Mater. 10(3) (2019) 1903325.
[40] ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity, Nano Lett. 18(6) (2018) 3829-3838.
[41] JEON Y M, KIM S, LEE M, et al. Polymer‐clay nanocomposite solid‐state electrolyte with selective cation transport boosting and retarded lithium dendrite formation, Adv. Energy Mater. 10(47) (2020) 2003114.
[42] WU W, WEI Z, WANG J, et al. Enabling high-energy flexible solid-state lithium ion batteries at room temperature, Chem. Eng. J. 424 (2021) 130335.
[43] TIAN G, ZHAO Z, ZINKEVICH T, et al. A crosslinked polyethyleneglycol solid electrolyte dissolving lithium bis(trifluoromethylsulfonyl)imide for techargeable lithium batteries, Chem. Sus. Chem. 12(20) (2019) 4708-4718.
[44] LI X, CONG L, MA S, et al. Low resistance and high stable solid–liquid electrolyte interphases enable high‐voltage solid‐state lithium metal batteries, Adv. Funct. Mater. 31(20) (2021) 2010611.
[45] WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nat. Nanotechnol. 14(7) (2019) 705-711.
[46] WANG Z, SHEN L, DENG S, et al. 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater. 33(25) (2021) e2100353.
[47] ZHANG S, LIANG T, WANG D, et al. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries, Adv. Sci. 8(15) (2021) 2003241.
[48] WU J, RAO Z, CHENG Z, et al. Ultrathin, flexible polymer electrolyte for cost‐effective fabrication of all‐solid‐state lithium metal batteries, Adv. Energy Mater. 9(46) (2019) 2010261.
[49] LIU W, YI C, LI L, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries, Angew. Chem. Int. Ed. 60(23) (2021) 12931-12940.
[50] HU P, SHEN Y, GUNA Y, et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density, Adv. Funct. Mater. 24(21) (2014) 3172-3178.
[51] HE F, TANG W, ZHANG X, et al. High energy density solid state lithium metal batteries enabled by sub-5 microm solid polymer electrolytes, Adv. Mater. 33(45) (2021) e2105329.
[52] ZHANG J, SUN B, HUANG X, et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety, Sci. Rep. 4 (2014) 6007.
[53] XU Y, ZHANG S, LIANG T, et al. Porous polyamide skeleton-reinforced solid-state electrolyte: Enhanced flexibility, safety, and electrochemical performance, ACS Appl. Mater. Interfaces 13(9) (2021) 11018-11025.
[54] LIN X, YU J, EFFAT M B, et al. Ultrathin and non‐flammable dual‐salt polymer electrolyte for high‐energy‐density lithium‐metal battery, Adv. Funct. Mater. 31(17) (2021) 2010261.
[55] CUI Y, WAN J, YE Y, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries, Nano Lett. 20(3) (2020) 1686-1692.
[56] YU Z, CUI Y, BAO Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes, Cell Rep. Physical Sci. 1(7) (2020) 100119.
[57] WANG MJ, CARMONA E, GUPTA A, et al. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating, Nat. Commun. 11(1) (2020) 5201.
[58] CUI Y, LIANG X, CHAI J, et al. High performance solid polymer electrolytes for rechargeable batteries: A self-catalyzed strategy toward facile synthesis, Adv. Sci. 4(11) (2017) 1700174.
[59] XU G, KUSHIMA A, YUAN J, et al. Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries, Energy. Environ. Sci. 10(12) (2017) 2544-2551.
[60] LIU FQ, WANG WP, YIN YX, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries, Sci. Adv. 4(10) (2018) eaat5383.
[61] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries, Nat. Energy 4(5) (2019) 365-373.
[62] ZHAO CZ , ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode, Adv. Mater. 32(12) (2020) e1905629.
[63] ZHOU J, QIAN T, LIU J, et al. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte, Nano Lett. 19(5) (2019) 3066-3073.
[64] ZHAO Q, LIU X, STALIN S, et al. In-built polymer-in-solvent and solvent-in-polymer electrolytes for high-voltage lithium metal batteries, Cell Rep. Phy. Sci. 1(8) (2020) 100146.
[65] YU J, LIN X, LIU J, et al. In situ fabricated quasi-solid polymer electrolyte for high‐energy‐density lithium metal battery capable of subzero operation, Adv. Energy Mater. 12(2) (2021) 2102932.
[66] YANG H, JING MX, LI HP, et al. 'Environment-friendly' polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy, Chem. Eng. J. 421 (2021) 129710.
[67] MA Q, YUE J, FAN M, et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries, Angew. Chem. Int. Ed. 60(30) (2021) 16554-16560.
[68] LIU Q, CAI B, LI S, et al. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte, J. Mater. Chem. A 8(15) (2020) 7197-7204.
[69] LI W, GAO J, TIAN H, et al. SnF2 -catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior, Angew. Chem. Int. Ed. 61(6) (2022) e202114805.
[70] GENG Z, HUANG Y, SUN G, et al. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries, Nano Energy 91 (2022) 106679.
[71] Deng T, Cao L, He X, et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries, Chem. 7(11) (2021) 3052-3068.
[72] CHENG H, ZHU J, JIN H, et al. In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries, Mater. Today Energy 20 (2021) 100623.
[73] YANG X, JIANG M, GAO X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?, Energy Environ. Sci. 13(5) (2020) 1318-1325.
[74] LIU Y, XU X, KAPITANOVA O O, et al. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes, Adv. Energy Mater. (2022) 2103589.
[75] FU C, VENTURI V, KIM J, et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries, Nat. Mater. 19(7) (2020) 758-766.
[76] ZHANG XQ, LI T, LI BQ, et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions, Angew. Chem. Int. Ed. 59(8) (2020) 3252-3257.
[77] HUANG W, WANG H, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy, ACS Energy Lett. 5(4) (2020) 1128-1135.
[78] GAO X, ZHOU Y N, HAN D, et al. Thermodynamic understanding of Li-dendrite formation, Joule 4(9) (2020) 1864-1879.
[79] CHENG XB, ZHAO CZ, YAO YX, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes, Chem. 5(1) (2019) 74-96.
[80] YU Z, WANG H, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries, Nat. Energy 5(7) (2020) 526-533.
[81] AMANCHUKWU C V, YU Z, KONG X, et al. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability, J. Am. Chem. Soc. 142(16) (2020) 7393-7403.
[82] CHANG J, HUANG Q, GAO Y, et al. Pathways of developing high-energy-density flexible lithium batteries, Adv. Mater. 33(46) (2021) e2004419.
[83] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes, Nat. Mater. 13(1) (2014) 69-73.
[84] HAN B, FENG D, LI S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries, Nano Lett. 20(5) (2020) 4029-4037.
[85] JI X, HOU S, WANG P, et al. Solid-state electrolyte design for lithium dendrite suppression, Adv. Mater. 32(46) (2020) e2002741.
[86] LIU Y, LIN D, LI Y, G. Chen, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun. 9(1) (2018) 3656.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM 912.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335903
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
文书静. 聚醚基固态电解质设计及其在锂金属电池中的应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930489-文书静-材料科学与工程(19733KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[文书静]的文章
百度学术
百度学术中相似的文章
[文书静]的文章
必应学术
必应学术中相似的文章
[文书静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。