[1] GILBERT J M, BALOUCHI F, JAMES M, et al. Comparison of energy harvesting systems for wireless sensor networks[J]. International Journal of Automation and Computing, 2008, 5:334-347.
[2] PARADISO J A, STARNER T. Energy scavenging for mobile and wireless electronics[J]. IEEE Pervasive Computing, 2005, 4(1):18-27.
[3] GREEN M A, YOSHIHIRO H, DUNLOP E D, et al. Solar cell efficiency tables (version 52)[J]. Progress in Photovoltaics Research and Applications, 2018, 26(7):427-436.
[4] XUE G B, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4):317.
[5] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3:1031-1041.
[6] KHALIGH A, PENG Z, CONG Z. Kinetic Energy harvesting using piezoelectric and electromagnetic technologies-state of the art[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3):850-860.
[7] LEFEUVRE E, D AUDIGIER, RICHARD C, et al. Buck-boost converter for sensorless power optimization of piezoelectric energy harvester[J]. IEEE Transactions on Power Electronics, 2007, 22(5):2018-2025.
[8] JAE, WON, LEE, et al. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement[J]. Science Advances, 2017, 3(5):1602902.
[9] QI J, LAN Y W, STIEG A Z, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics[J]. Nature Communications, 2015, 6:7430.
[10] LIN P, PAN C, WANG Z L, et al. Two-dimensional nanomaterials for novel piezotronics and piezophototronics[J]. Materials Today Nano, 2018, 4:17-31.
[11] SUZUKI Y, MIKI D, EDAMOTO M, et al. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20(10):104002.
[12] SHIN D W, MD Barnes, WALSH K, et al. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator[J]. Advanced Materials, 2018, 30(39):1802953.
[13] SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018, 30:1801210.
[14] PU X, LIU M, CHEN X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science Advances, 2017, 3(5):1700015.
[15] WU C S, WANG A C, DING W, et al. Triboelectric nanogenerator: A foundation of the energy for the new era[J]. Advanced Energy Materials, 2019, 9(1):1802906.1-1802906.25.
[16] THIELEN M, SIGRIST L, MAGNO M, et al. Human body heat for powering wearable devices: From thermal energy to application[J]. Energy Conversion & Management, 2017, 131:44-54.
[17] YANG P, KANG L, QIAN C, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat[J]. Angewandte Chemie International Edition, 2016, 55(39):12050-12053.
[18] STARNER T. Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35(3):618-629.
[19] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9:5146.
[20] LIU K, DING T, LI J, et al. Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film[J]. Advanced Energy Materials, 2018, 8(13):1702481.1-1702481.6.
[21] WANG Z L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – a recall on the original thoughts for coining these fields[J]. Nano Energy, 2018, 54:477-483.
[22] WANG Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.
[23] ZHAN L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377.
[24] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269):141-144.
[25] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390):778-783.
[26] DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy & Environmental Science, 2019, 12(4):1396-1403.
[27] TSAI Y F, WEI P C, CHANG L, et al. Compositional fluctuations locked by athermal transformation yielding high thermoelectric performance in GeTe[J]. Advanced Materials, 2021, 33(1):2005612.
[28] CHEN Z, JIAN Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Advanced Materials, 2017, 29(23):1606768.
[29] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418.
[30] OLVERA A A, MOROZ N A, SAHOO P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J]. Energy & Environmental Science, 2017, 10(7):1668-1676.
[31] NUNNA R, QIU P F, YIN M J, et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs[J]. Energy & Environmental Science, 2017, 10(9):1928-1935.
[32] YING P, LIU X, FU C, et al. High performance α-MgAgSb thermoelectric materials for low temperature power generation[J]. Chemistry of Materials, 2015, 27(3):909-913.
[33] LIU Z H, ZHANG Y S, MAO J, et al. The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb[J]. Acta Materialia, 2017, 128:227-234.
[34] IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J]. Energy & Environmental Science, 2019, 12(3):965-971.
[35] SHI X, SSUN C, BU Z, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics[J]. Advanced Science, 2019, 6(16):1802286.
[36] SHU R, ZHOU Y, WANG Q, et al. Mg3+δSbxBi2−x Family: A promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature[J]. Advanced Functional Materials, 2019, 29(4):1807235.
[37] MAO J, ZhU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452):495-498.
[38] JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1):62-68.
[39] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12:719.
[40] BLACKBURN J L, FERGUSON A J, CHO C, et al. Carbon‐nanotube‐based thermoelectric materials and devices[J]. Advanced Materials, 2018, 30(11):1704386.
[41] KHAN J, LIU Y, ZHAO T, et al. High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering[J]. Journal of Computational Chemistry, 2018, 39(31):2582-2588.
[42] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters, 2010, 10(3): 838-846.
[43] QUICKENDEN T I, VERNON C F. Thermogalvanic conversion of heat to electricity[J]. Solar Energy, 1986, 36(1):63-72.
[44] IKESHOJI T, KIMURA S, NAHUI F, et al. Computer analysis on natural convection in thin-layer thermocells with a soluble redox couple: Part 2. E-I relation, electric power, heat flux and electrochemical heat pump[J]. Journal of Electroanalytical Chemistry, 1991, 312(1-2):43-56.
[45] QUICKENDEN T I, MUA Y. ChemInform abstract: A review of power generation in aqueous thermogalvanic cells[J]. Cheminform, 1996, 27(7):3985-3994.
[46] RAHMAN M A, SAGHIR M Z. Thermodiffusion or soret effect: Historical review[J]. International Journal of Heat & Mass Transfer, 2014, 73:693-705.
[47] CHIKINA I, SHIKIN V, VARLAMOV, et al. Seebeck effect in electrolytes[J]. Physical Review. E, 2012, 86(1):011505.
[48] PU S, LIAO Y, CHEN K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting[J]. Nano Letters, 2020, 20(5):3791-3797.
[49] DUAN J J, FENG F, YU B Y, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9:5146.
[50] ARPAN K, FISHER T S. Harnessing the thermogalvanic effect of the ferro/ferricyanide redox couple in a thermally chargeable supercapacitor[J]. Electrochimica Acta, 2018, 281:357-369.
[51] ALZAHRANI H, MA Buckingham, MARKEN F, et al. Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells[J]. Electrochemistry Communications, 2019, 102:41-45.
[52] KIM T, LEE J S, LEE G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions[J]. Nano Energy, 2017, 31:160-167.
[53] ABRAHA T J, MACFARLANE D R, PRINGLE J M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting[J]. Energy & Environmental Science, 2013, 6(9):2639-2645.
[54] LAZAR M A, AL-MASRI D, MACFARLANE D R, et al. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures[J]. Physical Chemistry Chemical Physics, 2016, 18:1404-1410.
[55] BUCKINGHAM M A, MARKEN F, ALDOUS L. The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2:2717-2726.
[56] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9:1450-1457.
[57] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8:10813-10821.
[58] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18:608-613.
[59] CHENG H, HE X, FAN Z, et al. Flexible quasi‐solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32):1901085.
[60] FANG Y, CHENG H, HE H, et al. Stretchable and transparent ionogels with high thermoelectric properties[J]. Advanced Functional Materials, 2020, 30:2004699.
[61] CHEN B, CHEN Q L, XIAO S H, et al. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions[J]. Science Advances, 2021, 7(48):7233.
[62] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10:1093.
[63] HAN C G, QIAN X, LI Q K, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495):1091-1098.
[64] DUCKWORTH M, YAPHE W. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides[J]. Carbohydrate Research, 1971, 16:189-197.
[65] STELLWAGEN J, STELLWAGEN N C. Internal structure of the agarose gel matrix[J]. Journal of Chemical Physics, 1995, 99(12):4247-4251.
[66] AYMARD P, MARTIN D R, PLUCKNETT K, et al. Influence of thermal history on the structural and mechanical properties of agarose gels[J]. Biopolymers, 2001, 59:131-143.
[67] JIANG L, GRANICK S. Real-space, in situ maps of hydrogel pores[J]. ACS Nano, 2017, 11(1):204-210.
[68] TUSHAR J, TRIVEDI, DHRUBAJYOTI, et al. Functionalized agarose self-healing ionogels suitable for supercapacitors[J]. ChemSusChem, 2015, 8(19):3294-3303.
[69] SHAO J, ZHANG Z, ZHAO S, et al. Self-healing hydrogel of poly (vinyl alcohol)/agarose with robust mechanical property[J]. Starch, 2019, 71(5-6):1800281.
[70] CHEN C, LI X, ZHAO D W, et al. Precise control of agarose media pore structure by regulating cooling rate[J]. Journal of Separation Science, 2017, 40(22):4467-4474.
[71] MARRAS-MARQUEZ T, PENA J, VEIGA-OCHOA M D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture[J]. Carbohydrate Polymers, 2014, 103:359-368.
[72] ZHAO X, HUANG L, WU J, et al. Fabrication of rigid and macroporous agarose microspheres by pre-cross-linking and surfactant micelles swelling method[J]. Colloids and Surfaces B: Biointerfaces, 2019, 182:110377.
[73] YUAN Y, WANG L, MU R J, et al. Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels[J]. Carbohydrate Polymers, 2018, 190(15):196-203.
[74] HAN C G, LI Q K, ZHANG X B, et al. Anionic entanglement induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K-CH3SO3K[J]. National Science Review, under review.
[75] PERNODET N, MAALOUM M, TINLAND B. Pore size of agarose gels by atomic force microscopy[J]. Electrophoresis, 1997, 18(1):55-58.
[76] LI Y C, LI Q K, ZHANG X B, et al. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells[J]. Advanced Energy Materials, 2020, 210366.
修改评论