中文版 | English
题名

琼脂糖基离子热电凝胶材料的热电性能研究

姓名
姓名拼音
YU Dangkai
学号
12032314
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
刘玮书
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  近年来,快速发展的物联网技术对传感器提出了自供能需求。基于塞贝克效应的热电器件可将环境或人体产生的低品位热能转换成为电能,实现传感器的自供能。然而以碲化铋为代表的商用热电器件输出电压较低,使其难以满足在小温差场景下的传感器自供能的电压需求。以离子作为能量载体的离子热电凝胶材料基器件,具有电势高和结构简单等特点,有望克服这一技术瓶颈。然而,目前离子凝胶材料刚处于起步阶段,离子热电凝胶材料的材料体较少。基于此,本文以开发出高热电势的新型离子热电材料为研究目标,并详细研究了琼脂糖基离子热电凝胶材料中尺寸非对称的阴阳离子与高热电势之间的关系。

  以琼脂糖(AG)为凝胶材料的基体,以十二烷基苯磺酸钠(SDBS)作为热电转换的能量载体,开发出一种P型的琼脂糖基离子热电凝胶材料(AG-SDBS),热电势高达41.8 mV K-1,较之前课题组所报道的明胶基离子热电材料Gelatin-KCl-FeCN4-/3- 的热电势提高了145%。在热电性能方面有较大突破,本论文还系统研究了具有不同长度碳链的苯磺酸钠,盐浓度,水含量等参数对琼脂糖基离子热电凝胶材料热电性能的影响规律。

  基于琼脂基离子热电凝胶材料的热充电过程中动力学曲线和能谱分析元素分布等表征,发现该琼脂糖基离子热电材料AG-SDBS的巨热电势主要源于十二烷基苯磺酸钠中的阴阳离子非对称结构。阳离子亲水且尺寸较小,而阴离子疏水尺寸较大。琼脂糖基离子热电凝胶材料制备过程中,由于搅拌会产生大量气泡,十二烷基苯磺酸根离子(C18H29SO3-)会集聚在气泡周围而形成介稳态结构,在冷却成凝胶时琼脂糖凝胶层层之间形成微孔结构,该微孔结构为Na+提供快速扩散通道,而 C18H29SO3-的尺寸较大且拥有强疏水作用,扩散的阻力大,最终实现阴阳离子同向扩散的解耦,得到巨热电势。此外,基于上述机理,本文还选选用阳离子疏水基团的十二烷基三甲基溴化铵(DTAB),成功的制备出N型离子热电凝胶材料AG-DTAB

其他摘要

In recent yearsthe new trend of Internet-of-things requires self-power supply technique for sensors. Thermoelectric devices which are based on Seebeck effect can transform the low-grade heat energy generated by the environment or human body into electrical energy to realize the self-energy supply of sensors. However, the output voltage of thermoelectric devices based on the bismuth telluride is low, which makes it difficult to use in sensors with small temperature differences. Ion thermoelectric gel material-based devices in which the ions are applied as energy carriers has the feature of high electrical potential and simple structure and are expected to overcome this technical bottleneck of low voltage. However, there are still few material systems for ion thermoelectric gel materials. In this work, a newly ionic thermoelectric material with high thermal potential was developed. The correlation between the size asymmetric anions and high thermal potential in agarose-based ionic thermoelectric gel materials is investigated in detail.

A P-type agarose-based ionic thermoelectric gel material (AG- SDBS) was prepared by using agarose (AG) as the matrix of the gel material and sodium dodecylbenzene sulfonate (SDBS) as the energy carrier for thermo-electric conversion. High thermoelectric potential with the value of 41.8 mV K-1 was found in this material, which is 145% higher than the gelatin-based ionic thermoelectric gel material(Gelatin-KCl-FeCN4-/3-) reported by our group. The effect of sodium benzene sulfonate with different lengths of carbon chains, salt concentration, and water content on the thermoelectric properties of agarose-based ionic thermoelectric gels was also investigated in detail.

The kinetic curves and energy spectrum analysis of the ionic thermoelectric gel material reveal that the giant thermal potential of this agarose-based ionic thermoelectric material (AG-SDBS) mainly originates from the asymmetric structure of anions and cations in sodium dodecylbenzene sulfonate. Because the cations are hydrophilic and smaller in size, while the anions are hydrophobic and larger in size. During the preparation of agarose-based ionic thermoelectric gel, a large number of bubbles are generated in the process of stirring. The dodecylbenzene sulfonate ions (C18H29SO3-) will cluster around the bubbles and form a metastable structure, which forms a microporous structure between the agarose gel layers during its cooling into a gel. This microporous structure provides a diffusion channel for Na+, while the large size of C18H29SO3- wiht strong hydrophobic effect proved a large diffusion resistance. Finally, a giant thermal potential was found by the decoupling of anion and cation isotropic diffusion. Based on the above mechanism, a cationic hydrophobic group named dodecyltrimethylammonium bromide (DTAB) was selected to prepare the N-type ionic thermoelectric gel material AG-DTAB.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] GILBERT J M, BALOUCHI F, JAMES M, et al. Comparison of energy harvesting systems for wireless sensor networks[J]. International Journal of Automation and Computing, 2008, 5:334-347.
[2] PARADISO J A, STARNER T. Energy scavenging for mobile and wireless electronics[J]. IEEE Pervasive Computing, 2005, 4(1):18-27.
[3] GREEN M A, YOSHIHIRO H, DUNLOP E D, et al. Solar cell efficiency tables (version 52)[J]. Progress in Photovoltaics Research and Applications, 2018, 26(7):427-436.
[4] XUE G B, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4):317.
[5] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3:1031-1041.
[6] KHALIGH A, PENG Z, CONG Z. Kinetic Energy harvesting using piezoelectric and electromagnetic technologies-state of the art[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3):850-860.
[7] LEFEUVRE E, D AUDIGIER, RICHARD C, et al. Buck-boost converter for sensorless power optimization of piezoelectric energy harvester[J]. IEEE Transactions on Power Electronics, 2007, 22(5):2018-2025.
[8] JAE, WON, LEE, et al. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement[J]. Science Advances, 2017, 3(5):1602902.
[9] QI J, LAN Y W, STIEG A Z, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics[J]. Nature Communications, 2015, 6:7430.
[10] LIN P, PAN C, WANG Z L, et al. Two-dimensional nanomaterials for novel piezotronics and piezophototronics[J]. Materials Today Nano, 2018, 4:17-31.
[11] SUZUKI Y, MIKI D, EDAMOTO M, et al. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20(10):104002.
[12] SHIN D W, MD Barnes, WALSH K, et al. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator[J]. Advanced Materials, 2018, 30(39):1802953.
[13] SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018, 30:1801210.
[14] PU X, LIU M, CHEN X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science Advances, 2017, 3(5):1700015.
[15] WU C S, WANG A C, DING W, et al. Triboelectric nanogenerator: A foundation of the energy for the new era[J]. Advanced Energy Materials, 2019, 9(1):1802906.1-1802906.25.
[16] THIELEN M, SIGRIST L, MAGNO M, et al. Human body heat for powering wearable devices: From thermal energy to application[J]. Energy Conversion & Management, 2017, 131:44-54.
[17] YANG P, KANG L, QIAN C, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat[J]. Angewandte Chemie International Edition, 2016, 55(39):12050-12053.
[18] STARNER T. Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35(3):618-629.
[19] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9:5146.
[20] LIU K, DING T, LI J, et al. Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film[J]. Advanced Energy Materials, 2018, 8(13):1702481.1-1702481.6.
[21] WANG Z L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – a recall on the original thoughts for coining these fields[J]. Nano Energy, 2018, 54:477-483.
[22] WANG Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.
[23] ZHAN L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377.
[24] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269):141-144.
[25] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390):778-783.
[26] DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy & Environmental Science, 2019, 12(4):1396-1403.
[27] TSAI Y F, WEI P C, CHANG L, et al. Compositional fluctuations locked by athermal transformation yielding high thermoelectric performance in GeTe[J]. Advanced Materials, 2021, 33(1):2005612.
[28] CHEN Z, JIAN Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Advanced Materials, 2017, 29(23):1606768.
[29] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418.
[30] OLVERA A A, MOROZ N A, SAHOO P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J]. Energy & Environmental Science, 2017, 10(7):1668-1676.
[31] NUNNA R, QIU P F, YIN M J, et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs[J]. Energy & Environmental Science, 2017, 10(9):1928-1935.
[32] YING P, LIU X, FU C, et al. High performance α-MgAgSb thermoelectric materials for low temperature power generation[J]. Chemistry of Materials, 2015, 27(3):909-913.
[33] LIU Z H, ZHANG Y S, MAO J, et al. The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb[J]. Acta Materialia, 2017, 128:227-234.
[34] IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J]. Energy & Environmental Science, 2019, 12(3):965-971.
[35] SHI X, SSUN C, BU Z, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics[J]. Advanced Science, 2019, 6(16):1802286.
[36] SHU R, ZHOU Y, WANG Q, et al. Mg3+δSbxBi2−x Family: A promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature[J]. Advanced Functional Materials, 2019, 29(4):1807235.
[37] MAO J, ZhU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452):495-498.
[38] JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1):62-68.
[39] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12:719.
[40] BLACKBURN J L, FERGUSON A J, CHO C, et al. Carbon‐nanotube‐based thermoelectric materials and devices[J]. Advanced Materials, 2018, 30(11):1704386.
[41] KHAN J, LIU Y, ZHAO T, et al. High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering[J]. Journal of Computational Chemistry, 2018, 39(31):2582-2588.
[42] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters, 2010, 10(3): 838-846.
[43] QUICKENDEN T I, VERNON C F. Thermogalvanic conversion of heat to electricity[J]. Solar Energy, 1986, 36(1):63-72.
[44] IKESHOJI T, KIMURA S, NAHUI F, et al. Computer analysis on natural convection in thin-layer thermocells with a soluble redox couple: Part 2. E-I relation, electric power, heat flux and electrochemical heat pump[J]. Journal of Electroanalytical Chemistry, 1991, 312(1-2):43-56.
[45] QUICKENDEN T I, MUA Y. ChemInform abstract: A review of power generation in aqueous thermogalvanic cells[J]. Cheminform, 1996, 27(7):3985-3994.
[46] RAHMAN M A, SAGHIR M Z. Thermodiffusion or soret effect: Historical review[J]. International Journal of Heat & Mass Transfer, 2014, 73:693-705.
[47] CHIKINA I, SHIKIN V, VARLAMOV, et al. Seebeck effect in electrolytes[J]. Physical Review. E, 2012, 86(1):011505.
[48] PU S, LIAO Y, CHEN K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting[J]. Nano Letters, 2020, 20(5):3791-3797.
[49] DUAN J J, FENG F, YU B Y, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9:5146.
[50] ARPAN K, FISHER T S. Harnessing the thermogalvanic effect of the ferro/ferricyanide redox couple in a thermally chargeable supercapacitor[J]. Electrochimica Acta, 2018, 281:357-369.
[51] ALZAHRANI H, MA Buckingham, MARKEN F, et al. Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells[J]. Electrochemistry Communications, 2019, 102:41-45.
[52] KIM T, LEE J S, LEE G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions[J]. Nano Energy, 2017, 31:160-167.
[53] ABRAHA T J, MACFARLANE D R, PRINGLE J M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting[J]. Energy & Environmental Science, 2013, 6(9):2639-2645.
[54] LAZAR M A, AL-MASRI D, MACFARLANE D R, et al. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures[J]. Physical Chemistry Chemical Physics, 2016, 18:1404-1410.
[55] BUCKINGHAM M A, MARKEN F, ALDOUS L. The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2:2717-2726.
[56] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9:1450-1457.
[57] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8:10813-10821.
[58] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18:608-613.
[59] CHENG H, HE X, FAN Z, et al. Flexible quasi‐solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32):1901085.
[60] FANG Y, CHENG H, HE H, et al. Stretchable and transparent ionogels with high thermoelectric properties[J]. Advanced Functional Materials, 2020, 30:2004699.
[61] CHEN B, CHEN Q L, XIAO S H, et al. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions[J]. Science Advances, 2021, 7(48):7233.
[62] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10:1093.
[63] HAN C G, QIAN X, LI Q K, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495):1091-1098.
[64] DUCKWORTH M, YAPHE W. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides[J]. Carbohydrate Research, 1971, 16:189-197.
[65] STELLWAGEN J, STELLWAGEN N C. Internal structure of the agarose gel matrix[J]. Journal of Chemical Physics, 1995, 99(12):4247-4251.
[66] AYMARD P, MARTIN D R, PLUCKNETT K, et al. Influence of thermal history on the structural and mechanical properties of agarose gels[J]. Biopolymers, 2001, 59:131-143.
[67] JIANG L, GRANICK S. Real-space, in situ maps of hydrogel pores[J]. ACS Nano, 2017, 11(1):204-210.
[68] TUSHAR J, TRIVEDI, DHRUBAJYOTI, et al. Functionalized agarose self-healing ionogels suitable for supercapacitors[J]. ChemSusChem, 2015, 8(19):3294-3303.
[69] SHAO J, ZHANG Z, ZHAO S, et al. Self-healing hydrogel of poly (vinyl alcohol)/agarose with robust mechanical property[J]. Starch, 2019, 71(5-6):1800281.
[70] CHEN C, LI X, ZHAO D W, et al. Precise control of agarose media pore structure by regulating cooling rate[J]. Journal of Separation Science, 2017, 40(22):4467-4474.
[71] MARRAS-MARQUEZ T, PENA J, VEIGA-OCHOA M D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture[J]. Carbohydrate Polymers, 2014, 103:359-368.
[72] ZHAO X, HUANG L, WU J, et al. Fabrication of rigid and macroporous agarose microspheres by pre-cross-linking and surfactant micelles swelling method[J]. Colloids and Surfaces B: Biointerfaces, 2019, 182:110377.
[73] YUAN Y, WANG L, MU R J, et al. Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels[J]. Carbohydrate Polymers, 2018, 190(15):196-203.
[74] HAN C G, LI Q K, ZHANG X B, et al. Anionic entanglement induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K-CH3SO3K[J]. National Science Review, under review.
[75] PERNODET N, MAALOUM M, TINLAND B. Pore size of agarose gels by atomic force microscopy[J]. Electrophoresis, 1997, 18(1):55-58.
[76] LI Y C, LI Q K, ZHANG X B, et al. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells[J]. Advanced Energy Materials, 2020, 210366.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335904
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
于党凯. 琼脂糖基离子热电凝胶材料的热电性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032314-于党凯-材料科学与工程(4309KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于党凯]的文章
百度学术
百度学术中相似的文章
[于党凯]的文章
必应学术
必应学术中相似的文章
[于党凯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。