中文版 | English
题名

基于背景噪声成像法研究土耳其中部岩石圈速度结构

姓名
姓名拼音
WANG Peng
学号
11930642
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2022-05-15
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

面波成像是研究岩石圈速度结构的有效方法,但基于地震事件面波数据的传统成像方法因面波数据周期长、地震定位不准确、以及地震时空分布不均等因素难以对地壳内部结构有效成像。近二十年间发展起来的基于背景噪声的面波成像法有效地克服了上述传统地震方法的缺点,提高了面波成像的空间分辨率。陈晓非课题组提出的频率-贝塞尔变换法能够高效准确地提取面波高阶频散曲线,拓宽频带,为反演提供更多约束信息,降低反演的非唯一性,极大地提高了面波反演的精度。

土耳其东部是由大陆碰撞引起的挤压变形,而西部则为俯冲引起的爱琴海伸展变形,土耳其中部作为两者之间的过渡,此区域拥有复杂的地质情况、火山作用和长远的俯冲、大陆碰撞等构造历史,为了更好地了解土耳其中部的岩石圈速度结构,本文遵循背景噪声成像的处理流程,利用改进的频率-贝塞尔变换法提取频散曲线,结合基于BFGS矫正的拟牛顿迭代反演方法得到此地区0124 km深的高分辨率三维剪切波速度结构。结果表明,土耳其中部速度横向变化剧烈,速度界线与地质边界或缝合带区域密切相关;从塞浦路斯海沟开始俯冲的非洲大洋岩石圈,以近垂直角度俯冲在金牛座山脉中部下方,表现为明显的高速特征;此区域在70100 km广泛存在与上升软流圈物质相关的低速带,因此大部分研究区域的岩石圈波速小于全球平均剪切波速度,并且此区域岩石圈整体较薄,厚度多变;金牛座山脉中部和东部在中地壳的低速带十分明显,推测可能和块体破裂导致的地层部分熔融有关。

本文利用改进的频率-贝塞尔变换法得到的土耳其中部的三维剪切波速度结构具有很高的分辨率,为该区域的深入研究提供了可靠的数据支持,对进一步认识该区域的构造运动及其演化过程具有十分重要的指导意义。

其他摘要

Surface wave tomography is an effective means to study the shear wave velocity structure of the lithosphere. However, traditional surface wave imaging methods based on seismic events have difficulties in effectively imaging the internal structure of the crust, given that long period of surface wave data from seismic events, inaccurate seismic location and unevenly spatio-temporal distribution of earthquakes. Ambient noise tomography developed in recent 20 years effectively overcomes the shortcomings of the above traditional seismic methods, and greatly improves the spatial resolution of surface wave imaging. The frequency-Bessel transform method proposed by Chen Xiaofei’s research group can efficiently and accurately extract the multimodal surface wave dispersion curve and broaden the frequency band. Therefore, this method provides more constraint information for inversion, reduces the non-uniqueness of inversion and greatly improves the accuracy of surface wave inversion.

Central Turkey represents the transition between extrusion deformation of eastern Turkey caused by continental collision and extension deformation of western Turkey caused by continuous subduction along the Aegean trench. This region has complex geological conditions, volcanism and long-term tectonic history of subduction and continental collision. In order to understand the lithospheric velocity structure in central Turkey, we follow the processing procedure of ambient noise tomography and extracts dispersion curves by using modified frequency-Bessel transform method. Then we obtain the high-resolution 3D shear wave velocity structure at the depth of 0 ~ 124 km by using Quasi Newton iterative inversion method based on BFGS correction. The results reveal that the lateral variation of velocity in central Turkey is intense, and the velocity boundary is closely related to the geological boundary or suture zone. The African oceanic lithosphere, which began to subduct from the Cyprus trench, subducted below the central Taurus Mountains at a near vertical angle, showing high-speed characteristics. Low velocity zones related to upwelling asthenosphere materials widely exist within the depth range of 70-100 km in this region. Therefore, the lithospheric wave velocity in most of the study areas is less than the global average shear wave velocity, and the lithosphere is thin and variable; The low velocity zone in the middle crust is obvious in the Central Taurus Mountains and Eastern Taurus Mountains, which may be related to the partial melting caused by block fracture.

The 3D shear wave velocity structure in central Turkey obtained by the modified frequency-Bessel transform method has high resolution, provide reliable data for investigation of this region, and have important guiding significance for further understanding the tectonic movement and evolution process in this region.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] WEAVER R L. Information from Seismic Noise [J]. Science, 2005, 307(5715): 1568-1569.
[2] AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors [J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[3] DUVALL T L, JEFFERIES S M, HARVEY J W, et al. Time Distance Heloseismology [J]. Nature, 1993, 362(6419): 430-432.
[4] WEAVER R L, LOBKIS O I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies [J]. Physical Review Letters, 2001, 87(13): 134-301.
[5] CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda [J]. Science, 2003, 299(5606): 547-549.
[6] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise [J]. Science, 2005, 307(5715): 1615-1618.
[7] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps [J]. Geophysical Journal International, 2006, 166(2): 732-744.
[8] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise rayleigh wave tomography across Europe [J]. Geophysical Journal International, 2007, 168(1): 259-274.
[9] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[10] YANG Y, ZHENG Y, CHEN J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography [J]. Geochemistry Geophysics Geosystems, 2010, 11.
[11] LIN F-C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array [J]. Geophysics, 2013, 78(4): Q45-Q56.
[12] GREEN R G, PRIESTLEY K F, WHITE R S. Ambient noise tomography reveals upper crustal structure of Icelandic rifts [J]. Earth and Planetary Science Letters, 2017, 466: 20-31.
[13] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation [J]. Geophysics, 1981, 46(6): 869-874.
[14] CAPON J. High-resolution frequency-wavenumber spectrum analysis [J]. Proceedings of the Ieee, 1969, 57(8): 1408-&.
[15] C.B. PARK R D M, J. XIA, AND J. IVANOV. Multichannel analysis of surface waves (MASW) - Active and passive methods [J]. Leading Edge (Tulsa, OK), 2007, 26(1): 60-64.
[16] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform; proceedings of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhun, PEOPLES R CHINA, F 2008,Jun 15-20, 2008 [C]. 2008.
[17] XIA J H, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes [J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[18] WANG J, WU G, CHEN X. Frequency‐Bessel Transform Method for Effective Imaging of Higher‐Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[19] WU G-X, PAN L, WANG J-N, et al. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(1).
[20] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S波速度成像 [J]. 地球物理学报, 2019, 62(09): 3400-3407.
[21] 孙楠, 潘磊, 王伟涛, et al. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构 [J]. 地球物理学报, 2021, 64(11): 4012-4021.
[22] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves with Modified Frequency-Bessel Method [J]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152.
[23] ABGARMI B, DELPH J R, OZACAR A A, et al. Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics [J]. Geosphere, 2017, 13(6): 177417-177487.
[24] DELPH J R, BIRYOL C B, BECK S L, et al. Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey [J]. Geophysical Journal International, 2015, 202(1): 261-276.
[25] SENGOR A M C, TUYSUZ O, IMREN C, et al. The North Anatolian Fault: A new look [J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 37-112.
[26] DELPH J R, ABGARMI B, WARD K M, et al. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia [J]. Geosphere, 2017, 13(6): 1788-1805.
[27] BOZKURT E. Neotectonics of Turkey - a synthesis [J]. Geodinamica Acta, 2001, 14(1-3): 3-30.
[28] WARREN L M, BECK S L, BIRYOL C B, et al. Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography [J]. Geophysical Journal International, 2013, 194(3): 1941-1954.
[29] GANS C R, BECK S L, ZANDT G, et al. Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results [J]. Geophysical Journal International, 2009, 179(3): 1566-1572.
[30] ATES A, KEAREY P, TUFAN S. New gravity and magnetic anomaly maps of Turkey [J]. Geophysical Journal International, 1999, 136(2): 499-502.
[31] SCHLEIFFARTH W K, DARIN M H, REID M R, et al. Dynamics of episodic Late Cretaceous-Cenozoic magmatism across Central to Eastern Anatolia: New insights from an extensive geochronology compilation [J]. Geosphere, 2018, 14(5): 1990-2008.
[32] USLULAR G, LE CORVEC N, MAZZARINI F, et al. Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution [J]. Journal of Volcanology and Geothermal Research, 2021, 416.
[33] 冯旭平. 尾波干涉与经验格林函数重建 [D]; 南京大学, 2019.
[34] 詹中文. 地震背景噪声方法的理论与实践 [D]; 中国科学技术大学, 2008.
[35] DRAEGER C, FINK M. One-channel time-reversal in chaotic cavities: Theoretical limits [J]. Journal of the Acoustical Society of America, 1999, 105(2): 611-617.
[36] DERODE A, LAROSE E, TANTER M, et al. Recovering the Green's function from field-field correlations in an open scattering medium (L) [J]. Journal of the Acoustical Society of America, 2003, 113(6): 2973-2976.
[37] DE ROSNY J, FINK M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink [J]. Physical Review Letters, 2002, 89(12).
[38] 万永革. 地震学导论 [M]. 科学出版社, 2016.
[39] 詹望. 频率-贝塞尔变换方法在宽频带地震台网中的应用 [D]; 中国科学技术大学, 2020.
[40] 王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法 [D]; 中国科学技术大学, 2019.
[41] CHEN X F. A systematic and efficient method of computing normal-modes for multilatered half-space [J]. Geophysical Journal International, 1993, 115(2): 391-409.
[42] 何耀锋, 陈蔚天, 陈晓非. 利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题 [J]. 地球物理学报, 2006, (04): 1074-1081.
[43] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise [J]. Journal of Asian Earth Sciences, 2020, 196.
[44] SANCHEZ-SESMA F J, CAMPILLO M. Retrieval of the green's function from cross correlation: The canonical elastic problem [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191.
[45] HISADA Y. AN EFFICIENT METHOD FOR COMPUTING GREENS-FUNCTIONS FOR A LAYERED HALF-SPACE WITH SOURCES AND RECEIVERS AT CLOSE DEPTHS [J]. Bulletin of the Seismological Society of America, 1994, 84(5): 1456-1472.
[46] XI C, XIA J, MI B, et al. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise [J]. Geophysical Journal International, 2021, 225(2): 1271-1280.
[47] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes [J]. Geophysical Journal International, 2019, 216(2): 1276-1303.
[48] BROCHER T A. Empirical relations between elastic wavespeeds and density in the earth's crust [J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092.
[49] FICHTNER A, SAYGIN E, TAYMAZ T, et al. The deep structure of the North Anatolian Fault Zone [J]. Earth and Planetary Science Letters, 2013, 373: 109-117.
[50] AL-LAZKI A I, SANDVOL E, SEBER D, et al. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates [J]. Geophysical Journal International, 2004, 158(3): 1024-1040.
[51] GOVERS R, FICHTNER A. Signature of slab fragmentation beneath Anatolia from full-waveform tomography [J]. Earth and Planetary Science Letters, 2016, 450: 10-19.
[52] KESKIN M. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey [J]. Geophysical Research Letters, 2003, 30(24): 1-4.
[53] AL-LAZKI A I, SEBER D, SANDVOL E, et al. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and the surrounding regions [J]. Geophysical Research Letters, 2003, 30(24).
[54] ROTSTEIN Y, KAFKA A L. Seismotectonics of the southern boundary of Anatolia, eastern mediterranean region-subduction, collision, and arc jumping [J]. Journal of Geophysical Research, 1982, 87(NB9): 7694-7706.
[55] BAKIRCI T, YOSHIZAWA K, OZER M F. Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography [J]. Geophysical Journal International, 2012, 190(2): 1058-1076.
[56] KOUNOUDIS R, BASTOW I D, OGDEN C S, et al. Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal-Stage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault [J]. Geochemistry Geophysics Geosystems, 2020, 21(7).
[57] YILDIRIM DILEK E S. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region [J]. Geological Society, London, Special Publications, 2009, 327(1): 127-160.
[58] BIRYOL C B, BECK S L, ZANDT G, et al. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography [J]. Geophysical Journal International, 2011, 184(3): 1037-1057.
[59] PORTNER D E, DELPH J R, BIRYOL C B, et al. Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia [J]. Geosphere, 2018, 14(3): 907-925.
[60] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python Package for Extracting Overtone Surface-Wave Dispersion from Seismic Ambient-Noise Cross Correlation [J]. Seismological Research Letters, 2021, 92(5): 3179-3186.
[61] KAVIANI A, PAUL A, MORADI A, et al. Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography [J]. Geophysical Journal International, 2020, 221(2): 1349-1365.
[62] ANDREAS FICHTNER Y C-S, NIENKE BLOM,ALEXEY GOKHBERG. Eastern Mediterranean part of the Collaborative Seismic Earth Model(version 2019.12.01) [Z]. 2019.doi:10.17611/DP/18027082
[63] SHEN W S, RITZWOLLER M H, SCHULTE-PELKUM V, et al. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach [J]. Geophysical Journal International, 2013, 192(2): 807-836.
[64] COSENTINO D, SCHILDGEN T F, CIPOLLARI P, et al. Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey [J]. Geological Society of America Bulletin, 2012, 124(1-2): 133-145.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P315.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335907
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
王鹏. 基于背景噪声成像法研究土耳其中部岩石圈速度结构[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930642-王鹏-地球与空间科学系(4787KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王鹏]的文章
百度学术
百度学术中相似的文章
[王鹏]的文章
必应学术
必应学术中相似的文章
[王鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。