[1] WEAVER R L. Information from Seismic Noise [J]. Science, 2005, 307(5715): 1568-1569.
[2] AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors [J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[3] DUVALL T L, JEFFERIES S M, HARVEY J W, et al. Time Distance Heloseismology [J]. Nature, 1993, 362(6419): 430-432.
[4] WEAVER R L, LOBKIS O I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies [J]. Physical Review Letters, 2001, 87(13): 134-301.
[5] CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda [J]. Science, 2003, 299(5606): 547-549.
[6] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise [J]. Science, 2005, 307(5715): 1615-1618.
[7] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps [J]. Geophysical Journal International, 2006, 166(2): 732-744.
[8] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise rayleigh wave tomography across Europe [J]. Geophysical Journal International, 2007, 168(1): 259-274.
[9] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[10] YANG Y, ZHENG Y, CHEN J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography [J]. Geochemistry Geophysics Geosystems, 2010, 11.
[11] LIN F-C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array [J]. Geophysics, 2013, 78(4): Q45-Q56.
[12] GREEN R G, PRIESTLEY K F, WHITE R S. Ambient noise tomography reveals upper crustal structure of Icelandic rifts [J]. Earth and Planetary Science Letters, 2017, 466: 20-31.
[13] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation [J]. Geophysics, 1981, 46(6): 869-874.
[14] CAPON J. High-resolution frequency-wavenumber spectrum analysis [J]. Proceedings of the Ieee, 1969, 57(8): 1408-&.
[15] C.B. PARK R D M, J. XIA, AND J. IVANOV. Multichannel analysis of surface waves (MASW) - Active and passive methods [J]. Leading Edge (Tulsa, OK), 2007, 26(1): 60-64.
[16] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform; proceedings of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhun, PEOPLES R CHINA, F 2008,Jun 15-20, 2008 [C]. 2008.
[17] XIA J H, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes [J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[18] WANG J, WU G, CHEN X. Frequency‐Bessel Transform Method for Effective Imaging of Higher‐Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[19] WU G-X, PAN L, WANG J-N, et al. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array [J]. Journal of Geophysical Research-Solid Earth, 2020, 125(1).
[20] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S波速度成像 [J]. 地球物理学报, 2019, 62(09): 3400-3407.
[21] 孙楠, 潘磊, 王伟涛, et al. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构 [J]. 地球物理学报, 2021, 64(11): 4012-4021.
[22] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves with Modified Frequency-Bessel Method [J]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152.
[23] ABGARMI B, DELPH J R, OZACAR A A, et al. Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics [J]. Geosphere, 2017, 13(6): 177417-177487.
[24] DELPH J R, BIRYOL C B, BECK S L, et al. Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey [J]. Geophysical Journal International, 2015, 202(1): 261-276.
[25] SENGOR A M C, TUYSUZ O, IMREN C, et al. The North Anatolian Fault: A new look [J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 37-112.
[26] DELPH J R, ABGARMI B, WARD K M, et al. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia [J]. Geosphere, 2017, 13(6): 1788-1805.
[27] BOZKURT E. Neotectonics of Turkey - a synthesis [J]. Geodinamica Acta, 2001, 14(1-3): 3-30.
[28] WARREN L M, BECK S L, BIRYOL C B, et al. Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography [J]. Geophysical Journal International, 2013, 194(3): 1941-1954.
[29] GANS C R, BECK S L, ZANDT G, et al. Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results [J]. Geophysical Journal International, 2009, 179(3): 1566-1572.
[30] ATES A, KEAREY P, TUFAN S. New gravity and magnetic anomaly maps of Turkey [J]. Geophysical Journal International, 1999, 136(2): 499-502.
[31] SCHLEIFFARTH W K, DARIN M H, REID M R, et al. Dynamics of episodic Late Cretaceous-Cenozoic magmatism across Central to Eastern Anatolia: New insights from an extensive geochronology compilation [J]. Geosphere, 2018, 14(5): 1990-2008.
[32] USLULAR G, LE CORVEC N, MAZZARINI F, et al. Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution [J]. Journal of Volcanology and Geothermal Research, 2021, 416.
[33] 冯旭平. 尾波干涉与经验格林函数重建 [D]; 南京大学, 2019.
[34] 詹中文. 地震背景噪声方法的理论与实践 [D]; 中国科学技术大学, 2008.
[35] DRAEGER C, FINK M. One-channel time-reversal in chaotic cavities: Theoretical limits [J]. Journal of the Acoustical Society of America, 1999, 105(2): 611-617.
[36] DERODE A, LAROSE E, TANTER M, et al. Recovering the Green's function from field-field correlations in an open scattering medium (L) [J]. Journal of the Acoustical Society of America, 2003, 113(6): 2973-2976.
[37] DE ROSNY J, FINK M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink [J]. Physical Review Letters, 2002, 89(12).
[38] 万永革. 地震学导论 [M]. 科学出版社, 2016.
[39] 詹望. 频率-贝塞尔变换方法在宽频带地震台网中的应用 [D]; 中国科学技术大学, 2020.
[40] 王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法 [D]; 中国科学技术大学, 2019.
[41] CHEN X F. A systematic and efficient method of computing normal-modes for multilatered half-space [J]. Geophysical Journal International, 1993, 115(2): 391-409.
[42] 何耀锋, 陈蔚天, 陈晓非. 利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题 [J]. 地球物理学报, 2006, (04): 1074-1081.
[43] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise [J]. Journal of Asian Earth Sciences, 2020, 196.
[44] SANCHEZ-SESMA F J, CAMPILLO M. Retrieval of the green's function from cross correlation: The canonical elastic problem [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191.
[45] HISADA Y. AN EFFICIENT METHOD FOR COMPUTING GREENS-FUNCTIONS FOR A LAYERED HALF-SPACE WITH SOURCES AND RECEIVERS AT CLOSE DEPTHS [J]. Bulletin of the Seismological Society of America, 1994, 84(5): 1456-1472.
[46] XI C, XIA J, MI B, et al. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise [J]. Geophysical Journal International, 2021, 225(2): 1271-1280.
[47] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes [J]. Geophysical Journal International, 2019, 216(2): 1276-1303.
[48] BROCHER T A. Empirical relations between elastic wavespeeds and density in the earth's crust [J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092.
[49] FICHTNER A, SAYGIN E, TAYMAZ T, et al. The deep structure of the North Anatolian Fault Zone [J]. Earth and Planetary Science Letters, 2013, 373: 109-117.
[50] AL-LAZKI A I, SANDVOL E, SEBER D, et al. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates [J]. Geophysical Journal International, 2004, 158(3): 1024-1040.
[51] GOVERS R, FICHTNER A. Signature of slab fragmentation beneath Anatolia from full-waveform tomography [J]. Earth and Planetary Science Letters, 2016, 450: 10-19.
[52] KESKIN M. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey [J]. Geophysical Research Letters, 2003, 30(24): 1-4.
[53] AL-LAZKI A I, SEBER D, SANDVOL E, et al. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and the surrounding regions [J]. Geophysical Research Letters, 2003, 30(24).
[54] ROTSTEIN Y, KAFKA A L. Seismotectonics of the southern boundary of Anatolia, eastern mediterranean region-subduction, collision, and arc jumping [J]. Journal of Geophysical Research, 1982, 87(NB9): 7694-7706.
[55] BAKIRCI T, YOSHIZAWA K, OZER M F. Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography [J]. Geophysical Journal International, 2012, 190(2): 1058-1076.
[56] KOUNOUDIS R, BASTOW I D, OGDEN C S, et al. Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal-Stage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault [J]. Geochemistry Geophysics Geosystems, 2020, 21(7).
[57] YILDIRIM DILEK E S. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region [J]. Geological Society, London, Special Publications, 2009, 327(1): 127-160.
[58] BIRYOL C B, BECK S L, ZANDT G, et al. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography [J]. Geophysical Journal International, 2011, 184(3): 1037-1057.
[59] PORTNER D E, DELPH J R, BIRYOL C B, et al. Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia [J]. Geosphere, 2018, 14(3): 907-925.
[60] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python Package for Extracting Overtone Surface-Wave Dispersion from Seismic Ambient-Noise Cross Correlation [J]. Seismological Research Letters, 2021, 92(5): 3179-3186.
[61] KAVIANI A, PAUL A, MORADI A, et al. Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography [J]. Geophysical Journal International, 2020, 221(2): 1349-1365.
[62] ANDREAS FICHTNER Y C-S, NIENKE BLOM,ALEXEY GOKHBERG. Eastern Mediterranean part of the Collaborative Seismic Earth Model(version 2019.12.01) [Z]. 2019.doi:10.17611/DP/18027082
[63] SHEN W S, RITZWOLLER M H, SCHULTE-PELKUM V, et al. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach [J]. Geophysical Journal International, 2013, 192(2): 807-836.
[64] COSENTINO D, SCHILDGEN T F, CIPOLLARI P, et al. Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey [J]. Geological Society of America Bulletin, 2012, 124(1-2): 133-145.
修改评论