中文版 | English
题名

Material and structural behavior of additive manufactured high strength steel hollow sections

姓名
姓名拼音
YAN Jujie
学号
11653004
学位类型
博士
学位专业
土木工程
导师
严明
导师单位
材料科学与工程系
外机构导师
郭伟明
外机构导师单位
澳门大学
论文答辩日期
2022-01-10
论文提交日期
2022-06-16
学位授予单位
澳门大学
学位授予地点
澳门
摘要

Selective laser melting (SLM) is a powder-based additive manufacturing (AM) 
process that uses high laser energy to melt powders into solid parts. It provides many 
benefits over conventional manufacturing methods, such as geometric freedom, 
tooling-free production, and customization, etc. It has already been embraced by 
many industries, such as biomedical and aerospace industries, etc. Although the 
promising prospect of its application in civil engineering, SLM technology is still at 
a preliminary stage for construction industry. Therefore, to enlarge the scope of the 
application of this technology in construction industry, some ongoing issues 
associated with this technology should be systematically studied or solved. Firstly, 
because of the unique process characteristics, the microstructure of SLM-fabricated 
components is often metastable and has fine grains. As a result, SLM-fabricated 
components usually have high tensile strength but inferior ductility. Secondly, 
Microstructure defects such as porosity and balling often occur in the 
SLM-fabricated components. Finally, high level of residual stresses can occur in the 
SLM-fabricated components because of the large temperature gradient and high 
cooling rate during processing. 
 
Accordingly, this thesis is concerned with some issues related to SLM-fabricated 
H13 high strength steel, beginning with investigation of initial powder characteristics and ending at mechanical properties investigation and residual stress characterization 
of structural components. Firstly, the powder characteristics of H13 high strength 
steel were investigated to better understand the laser-powder interaction during the 
SLM processing. Optimal SLM processing parameters were also explored for H13 
high strength steel. Secondly, the mechanical properties and structural performance 
of additively manufactured high strength steel tubular sections were investigated at 
the cross-sectional level through experimental programs. Thirdly, the residual 
stresses were investigated by neutron diffraction method to study the effect of 
scanning patterns and cross-sectional geometries of hollow section. Finally, post heat 
treatments were utilized to improve the mechanical properties of SLM-fabricated 
H13 materials. Last but not least, the remaining issues and suggestions on future 
research on SLM-fabricated high strength steel are put forward. 

关键词
语种
英语
培养类别
联合培养
入学年份
2016
学位授予年份
2022-04
参考文献列表

Abd‐Elghany, K., & Bourell, D. L. (2012). Property evaluation of 304L stainless steel fabricated by selective laser melting. Rapid Prototyping Journal, 18(5), 420-428. https://doi.org/10.1108/13552541211250418 Ahmad, B., van der Veen, S. O., Fitzpatrick, M. E., & Guo, H. (2018). Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Additive Manufacturing, 22, 571-582. https://doi.org/10.1016/j.addma.2018.06.002Ahmadi, A., Mirzaeifar, R., Moghaddam, N. S., Turabi, A. S., Karaca, H. E., & Elahinia, M. (2016). Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Materials and Design, 112, 328-338. https://doi.org/10.1016/j.matdes.2016.09.043AISC. (2016). Specification for Structural Steel Buildings. ANSI/AISC 360-16, American Institute of Steel Construction, United States.Alam, M. K., Mehdi, M., Urbanic, R. J., & Edrisy, A. (2020). Mechanical behavior of additive manufactured AISI 420 martensitic stainless steel. Materials Science and Engineering: A, 773, Article 138815. https://doi.org/10.1016/j.msea.2019.138815Ali, H., Ghadbeigi, H., & Mumtaz, K. (2018). Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A, 712, 175-187. https://doi.org/10.1016/j.msea.2017.11.103Ali, H., Ma, L., Ghadbeigi, H., & Mumtaz, K. (2017). In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A, 695, 211-220. https://doi.org/10.1016/j.msea.2017.04.033Amato, K. N., Gaytan, S. M., Murr, L. E., Martinez, E., Shindo, P. W., Hernandez, J., Collins, S., & Medina, F. (2012). Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Materialia, 60, 2229-2239. https://doi.org/10.1016/j.actamat.2011.12.032AS/NZS. (2005). Cold-formed steel structures. AS/NZS 4600:2005, Australia/New Zealand Standard, Sydney, Australia.Åsberg, M., Fredriksson, G., Hatami, S., Fredriksson, W., & Krakhmalev, P. (2019). Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Materials Science and Engineering: A, 742, 584-589. https://doi.org/10.1016/j.msea.2018.08.046ASTM. (2009). Standard Test Methods for Tension Testing of Metallic Materials. ASTM E8/E8M-09, American Society for Testing and Materials, United States.ASTM. (2011). Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM-E384, American Society for Testing and Materials, United States.ASTM. (2015). Standard Terminology for Additive Manufacturing – General Principles – Terminology. ISO / ASTM52900-15, West Conshohocken, PA.ASTM. (2016). Standard Test Methods for Tension Testing of Metallic Materials. ASTM E8/E8M-16a, American Society for Testing and Materials, United States.Balbaa, M., Mekhiel, S., Elbestawi, M., & McIsaac, J. (2020). On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials and Design, 193. https://doi.org/10.1016/j.matdes.2020.108818Balletti, C., Ballarin, M., & Guerra, F. (2017). 3D printing: State of the art and future perspectives. Journal of Cultural Heritage, 26, 172-182. https://doi.org/10.1016/j.culher.2017.02.010Ban, H., Shi, G., Shi, Y., & Bradford, M. A. (2013). Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns. Journal of Constructional Steel Research, 88, 256-266. https://doi.org/10.1016/j.jcsr.2013.05.015Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Carvalho, O., Silva, F. S., & Miranda, G. (2017). 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Additive Manufacturing, 16, 81-89. https://doi.org/10.1016/j.addma.2017.05.007Baufeld, B., Brandl, E., & van der Biest, O. (2011). Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. Journal of Materials Processing Technology, 211(6), 1146-1158. https://doi.org/10.1016/j.jmatprotec.2011.01.018Bertini, L., Bucchi, F., Frendo, F., Moda, M., & Monelli, B. D. (2019). Residual stress prediction in selective laser melting. The International Journal of Advanced Manufacturing Technology, 105(1-4), 609-636. https://doi.org/10.1007/s00170-019-04091-5Bertoli, U. S., Guss, G., Wu, S., Matthews, M. J., & Schoenung, J. M. (2017). In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Materials and Design, 135, 385-396. https://doi.org/10.1016/j.matdes.2017.09.044Bhavar, V., Kattire, P., Patil, V., Khot, S., Gujar, K., & Singh, R. (2014). A review on powder bed fusion technology of metal additive manufacturing. Paper presented at the 4th International conference and exhibition on Additive Manufacturing Technologies-AM-2014, Banglore, India. Boegelein, T., Louvis, E., Dawson, K., Tatlock, G. J., & Jones, A. R. (2016). Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel. Materials Characterization, 112, 30-40. https://doi.org/10.1016/j.matchar.2015.11.021Bogue, R. (2013). 3D printing: the dawn of a new era in manufacturing? Assembly Automation, 33(4), 307-311. https://doi.org/10.1108/AA-06-2013-055Boley, C. D., Khairallah, S. A., & Rubenchik, A. M. (2015). Calculation of laser absorption by metal powders in additive manufacturing. Applied Optics, 54(9), 2477-2482. https://doi.org/10.1364/AO.54.002477Brown, M. S., & Arnold, C. B. (2010). Fundamentals of laser-material interaction and application to multiscale surface modification. In Sugioka K., Meunier M., & Piqué A (Eds.), Laser Precision Microfabrication. Springer Series in Materials Science (Vol. 135): Springer, Berlin, Heidelberg.BS. (2005a). Metallic materials–Vickers hardness test–Part 1: Test method. BS EN ISO 6507-1:2005, British Standards Institution, United Kingdom.BS. (2005b). Metallic materials–Vickers hardness test–Part 4: Tables of hardness values. BS EN ISO 6507-4:2005, British Standards Institution, United Kingdom.BSI. (2005). BS EN ISO 6507-1:2005, Metallic materials - Vickers hardness test - Part 1: Test method. EN ISO 6507-1 British Standard Institution (BSI).Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332-348. https://doi.org/10.1016/j.engstruct.2018.11.045Buchanan, C., Matilainen, V.-P., Salminen, A., & Gardner, L. (2017). Structural performance of additive manufactured metallic material and cross-sections. Journal of Constructional Steel Research, 136, 35-48. https://doi.org/10.1016/j.jcsr.2017.05.002Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., & Schrage, J. (2014). Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. Journal of Laser Applications, 26(1). https://doi.org/10.2351/1.4828755Cacace, S., Demir, A. G., & Semeraro, Q. (2017). Densification Mechanism for Different Types of Stainless Steel Powders in Selective Laser Melting. Procedia CIRP, 62, 475-480. https://doi.org/10.1016/j.procir.2016.06.010Cai, Y., Quach, W. M., Chen, M. T., & Ben, Y. (2019). Behavior and design of cold-formed and hot-finished steel elliptical tubular stub columns. Journal of Constructional Steel Research, 156, 252-265. https://doi.org/10.1016/j.jcsr.2019.02.006Campanelli, S. L., Contuzzi, N., & Ludovico, A. D. (2009). Manufacturing of 18 Ni Marage 300 Steel Samples by Selective Laser Melting. Advanced Materials Research, 83-86, 850-857. https://doi.org/10.4028/www.scientific.net/AMR.83-86.850Casalino, G., Campanelli, S. L., Contuzzi, N., & Ludovico, A. D. (2015). Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optics and Laser Technology, 65, 151-158. https://doi.org/10.1016/j.optlastec.2014.07.021CEN. (2005). Design of steel structures–Part 1.1: General rules and rules for buildings. EN 1993-1-1:2005, European Committee for Standardization, Brussels, Belgium.CEN. (2007). Design of steel structures–Part 1.6: Strength and Stability of Shell Structures. EN 1993-1-6:2007, European Committee for Standardization, Brussels, Belgium.Chan, T. M., Zhao, X. L., & Young, B. (2015). Cross-section classification for cold-formed and built-up high strength carbon and stainless steel tubes under compression. Journal of Constructional Steel Research, 106, 289-295. https://doi.org/10.1016/j.jcsr.2014.12.019Chang, C., Yan, X., Bolot, R., Gardan, J., Gao, S., Liu, M., Liao, H., Chemkhi, M., & Deng, S. (2020). Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting. Journal of Materials Science, 55(19), 8303-8316. https://doi.org/10.1007/s10853-020-04566-xCharleux, M., Poole, W. J., Militzer, M., & Deschamps, A. (2001). Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metallurgical and Materials Transactions A, 32A, 1635-1647. https://doi.org/10.1007/s11661-001-0142-6Chasoglou, D., Hryha, E., Norell, M., & Nyborg, L. (2013). Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Applied Surface Science, 268, 496-506. https://doi.org/10.1016/j.apsusc.2012.12.155Chen, C., Yan, K., Qin, L., Zhang, M., Wang, X., Zou, T., & Hu, Z. (2017a). Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel. Journal of Materials Engineering and Performance, 26(11), 5577-5589. https://doi.org/10.1007/s11665-017-2992-0Chen, C., Yin, J., Zhu, H., Xiao, Z., Zhang, L., & Zeng, X. (2019a). Effect of overlap rate and pattern on residual stress in selective laser melting. International Journal of Machine Tools and Manufacture, 145. https://doi.org/10.1016/j.ijmachtools.2019.103433Chen, G., Shu, X., Liu, J., Zhang, B., & Feng, J. (2020). A new method for distortion calculations in additive manufacturing: Contact analysis between a workpiece and clamps. International Journal of Mechanical Sciences, 171. https://doi.org/10.1016/j.ijmecsci.2019.105362Chen, H., Gu, D., Dai, D., Ma, C., & Xia, M. (2017b). Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Materials Science and Engineering: A, 682, 279-289. https://doi.org/10.1016/j.msea.2016.11.047Chen, J., Chen, M. T., & Young, B. (2019b). Compression Tests of Cold-Formed Steel C- and Z-Sections with Different Stiffeners. Journal of Structural Engineering, 145(5), 04019022. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002305Chen, M. T., & Young, B. (2018). Cross-sectional behavior of cold-formed steel semi-oval hollow sections. Engineering Structures, 177, 318-330. https://doi.org/10.1016/j.engstruct.2018.08.057Chen, M. T., & Young, B. (2019). Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns. Thin-Walled Structures, 134, 111-126. https://doi.org/10.1016/j.tws.2018.07.055Criales, L. E., Arısoy, Y. M., Lane, B., Moylan, S., Donmez, A., & Özel, T. (2017). Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. International Journal of Machine Tools and Manufacture, 121, 22-36. https://doi.org/10.1016/j.ijmachtools.2017.03.004Cruise, R. B. (2007). The Influence of Production Routes on the Behaviour of Stainless Steel Structural Members. (Doctor of Philosophy), Imperial College London, London SW7 2AZ. Dai, D., Gu, D., Zhang, H., Xiong, J., Ma, C., Hong, C., & Poprawe, R. (2018). Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Optics and Laser Technology, 99, 91-100. https://doi.org/10.1016/j.optlastec.2017.08.015Dalgarno, K. W., & Stewart, T. D. (2006). Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(10), 1323-1332. https://doi.org/10.1243/0954405011519042Damon, J., Hanemann, T., Dietrich, S., Graf, G., Lang, K.-H., & Schulze, V. (2019). Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5. International Journal of Fatigue, 127, 395-402. https://doi.org/10.1016/j.ijfatigue.2019.06.025Darvish, K., Chen, Z. W., Phan, M. A. L., & Pasang, T. (2018). Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition. Materials Characterization, 135, 183-191. https://doi.org/10.1016/j.matchar.2017.11.042Das, S. (2003). Physical aspects of process control in selective laser sintering of metals. Advanced Engineering Materials, 5(10), 701-711. https://doi.org/10.1002/adem.200310099Davidson, K., & Singamneni, S. (2015). Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Materials and Manufacturing Processes, 31(12), 1543-1555. https://doi.org/10.1080/10426914.2015.1090605de Almeida, P. R., Solas, M. Z., Renz, A., Bühler, M. M., Gerbert, P., Castagnino, S., & Rothballer, C. (2016). Shaping the future of construction: A breakthrough in mindsetand technolog. Published in: World Economic Forum. https://doi.org/10.13140/RG.2.2.21381.37605de Souza, A. F., Al-Rubaie, K. S., Marques, S., Zluhan, B., & Santos, E. (2019). Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Materials Science and Engineering: A, 767, p. 138425. https://doi.org/10.1016/j.msea.2019.138425DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001Deckard, C. R. (1999). Method and apparatus for producing parts by selective sintering. Patent No. EP0287657. UNIV TEXAS (Austin, Texas 78701, US) Deirmina, F., Peghini, N., AlMangour, B., Grzesiak, D., & Pellizzari, M. (2019). Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Materials Science and Engineering: A, 753, 109-121. https://doi.org/10.1016/j.msea.2019.03.027Deng, D., Peng, R. L., Brodin, H., & Moverare, J. (2018). Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments. Materials Science and Engineering: A, 713, 294-306. https://doi.org/10.1016/j.msea.2017.12.043Dhinakaran, V., Ajith, J., Fahmidha, A. F. Y., Jagadeesha, T., Sathish, T., & Stalin, B. (2020). Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys – A review. Materials Today: Proceedings, 21, 920-925. https://doi.org/10.1016/j.matpr.2019.08.159Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1-4), 465-481. https://doi.org/10.1007/s00170-015-7077-3Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138-146. https://doi.org/10.1016/j.addma.2018.12.013dos Reis, A. G., Reis, D. A. P., Abdalla, A. J., & Otubo, J. (2015). High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel. Materials Characterization, 107, 350-357. https://doi.org/10.1016/j.matchar.2015.08.002Dowling, L., Kennedy, J., O'Shaughnessy, S., & Trimble, D. (2020). A review of critical repeatability and reproducibility issues in powder bed fusion. Materials and Design, 186. https://doi.org/10.1016/j.matdes.2019.108346Edwards, P., & Ramulu, M. (2014). Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science and Engineering: A, 598, 327-337. https://doi.org/10.1016/j.msea.2014.01.041Engeli, R., Etter, T., Hövel, S., & Wegener, K. (2016). Processability of different IN738LC powder batches by selective laser melting. Journal of Materials Processing Technology, 229, 484-491. https://doi.org/10.1016/j.jmatprotec.2015.09.046Fang, Z. C., Wu, Z. L., Huang, C. G., & Wu, C. W. (2020). Review on residual stress in selective laser melting additive manufacturing of alloy parts. Optics and Laser Technology, 129. https://doi.org/10.1016/j.optlastec.2020.106283Fayazfar, H., Salarian, M., Rogalsky, A., Sarker, D., Russo, P., Paserin, V., & Toyserkani, E. (2018). A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Materials & Design, 144, 98-128. https://doi.org/10.1016/j.matdes.2018.02.018Galjaard, S., Hofman, S., & Ren, S. (2015). New Opportunities to Optimize Structural Designs in Metal by Using Additive Manufacturing. Paper presented at the Advances in Architectural Geometry 2014. Gao, L., Sun, H., Jin, F., & Fan, H. (2009). Load-carrying capacity of high-strength steel box-sections I: Stub columns. Journal of Constructional Steel Research, 65(4), 918-924. https://doi.org/10.1016/j.jcsr.2008.07.002Gaskell, D. R. (2003). Introduction to the Thermodynamics of Materials (4th ed.). Taylor & Francis: New York, NY, USA.GB. (2010). GB/T 228.1-2010, Metallic materials - Tensile testing - Part 1: Method of test at room temperature. GB/T 228.1-2010, Standard Press of China, Beijing, China.Ghaffari, M., Nemani, A. V., & Nasiri, A. (2020). Interfacial bonding between a wire arc additive manufactured 420 martensitic stainless steel part and its wrought base plate. Materials Chemistry and Physics, 251. https://doi.org/10.1016/j.matchemphys.2020.123199Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing (2nd ed.). New York: NY: Springer New York.Gil, E., Cortés, J., Iturriza, I., & Ordás, N. (2018). XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route. Applied Surface Science, 427, 182-191. https://doi.org/10.1016/j.apsusc.2017.07.205Gladman, T. (2013). Precipitation hardening in metals. Materials Science and Technology, 15(1), 30-36. https://doi.org/10.1179/026708399773002782Goehrke, S. A. (2015). 3D printed steel pedestrian bridge will soon span an Amsterdam canal. Access Date: 5 Aug 2020. Retrieved from https://3dprint.com/72682/amsterdam-3d-printed-bridge/Gray, G. T., Livescu, V., Rigg, P. A., Trujillo, C. P., Cady, C. M., Chen, S. R., Carpenter, J. S., Lienert, T. J., & Fensin, S. J. (2017). Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Materialia, 138, 140-149. https://doi.org/10.1016/j.actamat.2017.07.045Gu, D., & Shen, Y. (2009). Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Materials and Design, 30(8), 2903-2910. https://doi.org/10.1016/j.matdes.2009.01.013Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2013). Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57(3), 133-164. https://doi.org/10.1179/1743280411Y.0000000014Guo, N., & Leu, M. C. (2013). Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215-243. https://doi.org/10.1007/s11465-013-0248-8Hao, T., Fan, Z. Q., Zhao, S. X., Luo, G. N., Liu, C. S., & Fang, Q. F. (2014). Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel. Materials Science and Engineering: A, 596, 244-249. https://doi.org/10.1016/j.msea.2013.12.062Harun, W. S. W., Kamariah, M. S. I. N., Muhamad, N., Ghani, S. A. C., Ahmad, F., & Mohamed, Z. (2018a). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128-151. https://doi.org/10.1016/j.powtec.2017.12.058Harun, W. S. W., Manam, N. S., Kamariah, M. S. I. N., Sharif, S., Zulkifly, A. H., Ahmad, I., & Miura, H. (2018b). A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technology, 331, 74-97. https://doi.org/10.1016/j.powtec.2017.12.058Hatami, S., Ma, T., Vuoristo, T., Bertilsson, J., & Lyckfeldt, O. (2020). Fatigue Strength of 316 L Stainless Steel Manufactured by Selective Laser Melting. Journal of Materials Engineering and Performance, 29(5), 3183-3194. https://doi.org/10.1007/s11665-020-04859-xHe, A., Liang, Y., & Zhao, O. (2019). Experimental and numerical studies of austenitic stainless steel CHS stub columns after exposed to elevated temperatures. Journal of Constructional Steel Research, 154, 293–305. https://doi.org/10.1016/j.jcsr.2018.12.005He, A., & Zhao, O. (2019). Experimental and numerical investigations of concrete-filled stainless steel tube stub columns under axial partial compression. Journal of Constructional Steel Research, 158, 405-416. https://doi.org/10.1016/j.jcsr.2019.04.002Hebert, R. J. (2016). Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. Journal of Materials Science, 51(3), 1165-1175. https://doi.org/10.1007/s10853-015-9479-xHeller, J., Bartha, J. W., Poon, C. C., & Tam, A. C. (1999). Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm. Applied Physics Letters, 75(1), 43-45. https://doi.org/10.1063/1.124271Hengsbach, F., Koppa, P., Duschik, K., Holzweissig, M. J., Burns, M., Nellesen, J., Tillmann, W., Tröster, T., Hoyer, K.-P., & Schaper, M. (2017). Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical properties. Materials and Design, 133, 136-142. https://doi.org/10.1016/j.matdes.2017.07.046Holzweissig, M. J., Taube, A., Brenne, F., Schaper, M., & Niendorf, T. (2015). Microstructural Characterization and Mechanical Performance of Hot Work Tool Steel Processed by Selective Laser Melting. Metallurgical and Materials Transactions B, 46(2), 545-549. https://doi.org/10.1007/s11663-014-0267-9Hryha, E., Gierl, C., Nyborg, L., Danninger, H., & Dudrova, E. (2010). Surface composition of the steel powders pre-alloyed with manganese. Applied Surface Science, 256(12), 3946-3961. https://doi.org/10.1016/j.apsusc.2010.01.055Hutchinson, B., Hagström, J., Karlsson, O., Lindell, D., Tornberg, M., Lindberg, F., & Thuvander, M. (2011). Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Materialia, 59(14), 5845-5858. https://doi.org/10.1016/j.actamat.2011.05.061Irrinki, H., Jangam, J. S. D., Pasebani, S., Badwe, S., Stitzel, J., Kate, K., Gulsoy, O., & Atre, S. V. (2018). Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion. Powder Technology, 331, 192-203. https://doi.org/10.1016/j.powtec.2018.03.025Islamgaliev, R. K., Nikitina, M. A., Ganeev, A. V., & Sitdikov, V. D. (2019). Strengthening mechanisms in ultrafine-grained ferritic/martensitic steel produced by equal channel angular pressing. Materials Science and Engineering: A, 744, 163-170. https://doi.org/10.1016/j.msea.2018.11.141Jandera, M., Gardner, L., & Machacek, J. (2008). Residual stresses in cold-rolled stainless steel hollow sections. Journal of Constructional Steel Research, 64(11), 1255-1263. https://doi.org/10.1016/j.jcsr.2008.07.022Jiao, Z. H., Xu, R. D., Yu, H. C., & Wu, X. R. (2017). Evaluation on tensile and fatigue crack growth performances of Ti6Al4V alloy produced by selective laser melting. Procedia Structural Integrity, 7, 124-132. https://doi.org/10.1016/j.prostr.2017.11.069Kanagarajah, P., Brenne, F., Niendorf, T., & Maier, H. J. (2013). Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science and Engineering: A, 588, 188-195. https://doi.org/10.1016/j.msea.2013.09.025Kang, Y. L., Han, Q. K., Zhao, X. M., & Cai, M. H. (2013). Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium. Materials and Design, 44, 331-339. https://doi.org/10.1016/j.matdes.2012.07.068Karczewski, K., Pęska, M., Ziętala, M., & Polański, M. (2017). Fe-Al thin walls manufactured by Laser Engineered Net Shaping. Journal of Alloys and Compounds, 696, 1105-1112. https://doi.org/10.1016/j.jallcom.2016.12.034King, W., Anderson, A. T., Ferencz, R., Hodge, N. E., Kamath, C., Khairallah, S. A., & Rubenchik, A. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4). https://doi.org/10.1063/1.4937809Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures for polycrystalline and amorphous materials. New York (NY): John Wiley & Sons (2nd ed.).Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting — a review. International Materials Reviews, 61(5), 361-377. https://doi.org/10.1080/09506608.2016.1176289Kovacı, H. (2019). Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes. Surface and Coatings Technology, 374, 987-996. https://doi.org/10.1016/j.surfcoat.2019.06.095Krell, J., Röttger, A., Geenen, K., & Theisen, W. (2018). General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. Journal of Materials Processing Technology, 255, 679-688. https://doi.org/10.1016/j.jmatprotec.2018.01.012Kruth, J.-P., Deckers, J., Yasa, E., & Wauthlé, R. (2012). Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(6), 980-991. https://doi.org/10.1177/0954405412437085Kruth, J. P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., & Rombouts, M. (2005). Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 11(1), 26-36. https://doi.org/10.1108/13552540510573365Kuo, K. H., & Jia, C. L. (1985). Crystallography of M23C6 and M6C precipitated in a low alloy steel. Acta Materialia, 33(6), 991-996. https://doi.org/10.1016/0001-6160(85)90193-2Lai, M. H., Chen, M. T., Ren, F. M., & Ho, J. C. M. (2019). Uni-axial behaviour of externally confined UHSCFST columns. Thin-Walled Structures, 142, 19-36. https://doi.org/10.1016/j.tws.2019.04.047Lee, E.-S., & Ahn, S. (1994). Solification progress and heat transfer analysis of gas-atomized alloy droplets spray forming. Acta Metallurgica et Materialia, 42(9), 3231-3243. https://doi.org/10.1016/0956-7151(94)90421-9Lee, J., Choe, J., Park, J., Yu, J.-H., Kim, S., Jung, I. D., & Sung, H. (2019). Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Materials Characterization, 155, 109817. https://doi.org/10.1016/j.matchar.2019.109817Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300-307. https://doi.org/10.1016/j.ijfatigue.2012.11.011Levkulich, N. C., Semiatin, S. L., Gockel, J. E., Middendorf, J. R., DeWald, A. T., & Klingbeil, N. W. (2019). The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing, 28, 475–484. https://doi.org/10.1016/j.addma.2019.05.015Li, C. L., Won, J. W., Choi, S. W., Choe, J. H., Lee, S., Park, C. H., Yeom, J. T., & Hong, J. K. (2019a). Simultaneous achievement of equiaxed grain structure and weak texture in pure titanium via selective laser melting and subsequent heat treatment. Journal of Alloys and Compounds, 803, 407-412. https://doi.org/10.1016/j.jallcom.2019.06.305Li, F., Ma, D., Chen, Z., Liu, J., Youg, Q., & Kang, Z. (2008). Structure and properties of high temperature diffused-superfining treated die steel H13. Special Steel, 29(3), 63-65. https://doi.org/10.3969/j.issn.1003-8620.2008.03.023Li, H. T., & Young, B. (2017a). Cold-formed ferritic stainless steel tubular structural members subjected to concentrated bearing loads. Engineering Structures, 145, 392-405. https://doi.org/10.1016/j.engstruct.2017.05.022Li, H. T., & Young, B. (2017b). Material properties of cold-formed high strength steel at elevated temperatures. Thin-Walled Structures, 115, 289-299. https://doi.org/10.1016/j.tws.2017.02.019Li, H. T., & Young, B. (2017c). Tests of cold-formed high strength steel tubular sections undergoing web crippling. Engineering Structures, 141, 571-583. https://doi.org/10.1016/j.engstruct.2017.03.051Li, H. X., Qi, H. L., Song, C. H., Li, Y. L., & Yan, M. (2017a). Selective laser melting of P20 mould steel: investigation on the resultant microstructure, high-temperature hardness and corrosion resistance. Powder Metallurgy, 61(1), 21-27. https://doi.org/10.1080/00325899.2017.1368965Li, J., Wang, H., Sun, G., Chen, B., Chen, Y., Pang, B., Zhang, Y., Wang, Y., Zhang, C., Gong, J., & Liu, Y. (2015). Neutron diffractometer RSND for residual stress analysis at CAEP. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 783, 76-79. https://doi.org/10.1016/j.nima.2015.02.026Li, J., Wang, X., Qi, W., Tian, J., & Gong, S. (2019b). Laser nanocomposites-reinforcing/manufacturing of SLM 18Ni300 alloy under aging treatment. Materials Characterization, 153, 69-78. https://doi.org/10.1016/j.matchar.2019.04.038Li, Q. (2003). Modeling the microstructure–mechanical property relationship for a 12Cr–2W–V–Mo–Ni power plant steel. Materials Science and Engineering: A,, 361(1-2), 385-391. https://doi.org/10.1016/S0921-5093(03)00565-3Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J., & Jiang, W. (2010). Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science, 256(13), 4350-4356. https://doi.org/10.1016/j.apsusc.2010.02.030Li, S. H., Zeng, G., Ma, Y. F., Guo, Y. J., & Lai, X. M. (2009). Residual stresses in roll-formed square hollow sections. Thin-Walled Structures, 47, 505-513. https://doi.org/10.1016/j.tws.2008.10.015Li, X., Shi, J. J., Cao, G. H., Russell, A. M., Zhou, Z. J., Li, C. P., & Chen, G. F. (2019c). Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process. Materials and Design, 180, 107915. https://doi.org/10.1016/j.matdes.2019.107915Li, Y., Hu, Y., Cong, W., Zhi, L., & Guo, Z. (2017b). Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables. Ceramics International, 43(10), 7768-7775. https://doi.org/10.1016/j.ceramint.2017.03.085Liang, Y., Jeyapragasam, V. V. K., Zhang, L., & Zhao, O. (2019). Flexural-torsional buckling behaviour of fixed-ended hot-rolled austenitic stainless steel equal-leg angle section columns. Journal of Constructional Steel Research, 154, 43–54. https://doi.org/10.1016/j.jcsr.2018.11.019Liu, J., Song, Y., Chen, C., Wang, X., Li, H., Zhou, C. a., Wang, J., Guo, K., & Sun, J. (2020). Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Materials and Design, 186. https://doi.org/10.1016/j.matdes.2019.108355Liverani, E., Toschi, S., Ceschini, L., & Fortunato, A. (2017). Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 249, 255-263. https://doi.org/10.1016/j.jmatprotec.2017.05.042Lodes, M. A., Guschlbauer, R., & Körner, C. (2015). Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Materials Letters, 143, 298-301. https://doi.org/10.1016/j.matlet.2014.12.105López-Castro, J. D., Marchal, A., González, L., & Botana, J. (2017). Topological optimization and manufacturing by Direct Metal Laser Sintering of an aeronautical part in 15-5PH stainless steel. Procedia Manufacturing, 13, 818-824. https://doi.org/10.1016/j.promfg.2017.09.121Louvis, E., Fox, P., & Sutcliffe, C. J. (2011). Selective laser melting of aluminium components. Journal of Materials Processing Technology, 211(2), 275-284. https://doi.org/10.1016/j.jmatprotec.2010.09.019Lu, J., Omotoso, O., Wiskel, J. B., Ivey, D. G., & Henein, H. (2012). Strengthening mechanisms and their relative contributions to the yield strength of microalloyed steels. Metallurgical and Materials Transactions A, 43(9), 3043-3061. https://doi.org/10.1007/s11661-012-1135-3Lu, Y., Ren, L., Wu, S., Yang, C., Lin, W., Xiao, S., Yang, Y., Yang, K., & Lin, J. (2018). CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties and microstructural analysis. Powder Technology, 325, 289-300. https://doi.org/10.1016/j.powtec.2017.11.018Lu, Y., Wu, S., Gan, Y., Huang, T., Yang, C., Junjie, L., & Lin, J. (2015). Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Optics and Laser Technology, 75, 197-206. https://doi.org/10.1016/j.optlastec.2015.07.009Ma, J. L., Chan, T. M., & Young, B. (2015a). Experimental Investigation on Stub-Column Behavior of Cold-Formed High-Strength Steel Tubular Sections. Journal of Structural Engineering, 142(5), 04015174. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001456Ma, J. L., Chan, T. M., & Young, B. (2015b). Material properties and residual stresses of cold-formed high strength steel hollow sections. Journal of Constructional Steel Research, 109, 152-165. https://doi.org/10.1016/j.jcsr.2015.02.006Ma, J. L., Chan, T. M., & Young, B. (2016). Experimental investigation of cold-formed high strength steel tubular beams. Engineering Structures, 126, 200-209. https://doi.org/10.1016/j.engstruct.2016.07.027Ma, J. L., Chan, T. M., & Young, B. (2017a). Design of cold-formed high strength steel tubular beams. Engineering Structures, 151, 432-443. https://doi.org/10.1016/j.engstruct.2017.08.002Ma, J. L., Chan, T. M., & Young, B. (2017b). Tests on high-strength steel hollow sections: a review. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(9), 621-630. https://doi.org/10.1680/jstbu.16.00113Ma, M., Wang, Z., & Zeng, X. (2017c). A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Materials Science and Engineering: A, 685, 265-273. https://doi.org/10.1016/j.msea.2016.12.112Majtaa, J., Lenardb, J. G., & Pietrzyk, M. (1996). A study of the effect of the thermomechanical history on the mechanical properties of a high niobium steel. Materials Science and Engineering: A, 208, 249-259. https://doi.org/10.1016/0921-5093(95)10050-4Mao, W. W., Ning, A. G., & Guo, H. J. (2016). Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel. International Journal of Minerals, Metallurgy, and Materials,, 23(9), 1056-1064. https://doi.org/10.1007/s12613-016-1323-zMarkforged. H13 tool steel. Access Date: 15 Sep 2019. Retrieved from https://markforged.com/materials/h13-tool-steel/Maropoulos, S., Paul, J. D. H., & Ridley, N. (1993). Microstructure-property relationships in tempered low alloy Cr-Mo-3.5Ni-V steel. Materials Science and Technology, 9, 1014-1019. https://doi.org/10.1179/mst.1993.9.11.1014Martina, F., Ding, J., Williams, S., Caballero, A., Pardal, G., & Quintino, L. (2019). Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Additive Manufacturing, 25, 545-550. https://doi.org/10.1016/j.addma.2018.11.022Mazaheri, Y., Kermanpur, A., & Najafizadeh, A. (2015). Strengthening Mechanisms of Ultrafine Grained Dual Phase Steels Developed by New Thermomechanical Processing. ISIJ International, 55(1), 218-226. https://doi.org/10.2355/isijinternational.55.218Mazumder, J., Choi, J., Nagarathnam, K., Koch, J., & Hetzner, D. (1997). The direct metal deposition of H13 tool steel for 3-D components. JOM, 49, 55-60. https://doi.org/10.1007/bf02914687Mazur, M., Brincat, P., Leary, M., & Brandt, M. (2017). Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. The International Journal of Advanced Manufacturing Technology, 93(1-4), 881-900. https://doi.org/10.1007/s00170-017-0426-7Meier, H., & Haberland, C. (2008). Experimental studies on selective laser melting of metallic parts. Materials Science and Engineering Technology, 39(9), 665-670. https://doi.org/10.1002/mawe.200800327Mertens, R., Vrancken, B., Holmstock, N., Kinds, Y., Kruth, J. P., & Van Humbeeck, J. (2016). Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. Physics Procedia, 83, 882-890. https://doi.org/10.1016/j.phpro.2016.08.092Mohee, F. M., & Al-Mayah, A. (2017). Effect of modulus of elasticity and thickness of the CFRP plate on the performance of a novel anchor for structural retrofitting and rehabilitation applications. Engineering Structures, 153, 302-316. https://doi.org/10.1016/j.engstruct.2017.09.057Montero-Sistiaga, M. L., Mertens, R., Vrancken, B., Wang, X., Van Hooreweder, B., Kruth, J.-P., & Van Humbeeck, J. (2016). Changing the alloy composition of Al7075 for better processability by selective laser melting. Journal of Materials Processing Technology, 238, 437-445. https://doi.org/10.1016/j.jmatprotec.2016.08.003Muránsky, O., Hamelin, C. J., Patel, V. I., Luzin, V., & Braham, C. (2015). The influence of constitutive material models on accumulated plastic strain in finite element weld analyses. International Journal of Solids and Structures, 69-70, 518-530. https://doi.org/10.1016/j.ijsolstr.2015.04.032Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., Shindo, P. W., Medina, F. R., & Wicker, R. B. (2012a). Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science & Technology, 28(1), 1-14. https://doi.org/10.1016/S1005-0302(12)60016-4Murr, L. E., Martinez, E., Amato, K. N., Gaytan, S. M., Hernandez, J., Ramirez, D. A., Shindo, P. W., Medina, F., & Wicker, R. B. (2012b). Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. Journal of Materials Research and Technology, 1(1), 42-54. https://doi.org/10.1016/s2238-7854(12)70009-1MX3D. MX3D Bridge. Access Date: 4 June 2021. Retrieved from https://mx3d.com/projects/mx3d-bridge/Nadammal, N., Cabeza, S., Mishurova, T., Thiede, T., Kromm, A., Seyfert, C., Farahbod, L., Haberland, C., Schneider, J. A., Portella, P. D., & Bruno, G. (2017). Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Materials and Design, 134, 139-150. https://doi.org/10.1016/j.matdes.2017.08.049Nadammal, N., Mishurova, T., Fritsch, T., Munoz, I. S., Kromm, A., Haberland, C., Portella, P. D., & Bruno, G. (2021). Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Additive Manufacturing, 38, Article No. 101792. https://doi.org/10.1016/j.addma.2020.101792Neikov, O. D. (2019). Powders for Additive Manufacturing Processing. In Handbook of Non-Ferrous Metal Powders (pp. 373-399).Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012Nicoletto, G., Konečná, R., Frkáň, M., & Riva, E. (2018). Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V. International Journal of Fatigue, 116, 140-148. https://doi.org/10.1016/j.ijfatigue.2018.06.011Ning, A., Gao, R., Yue, S., Guo, H., & Li, L. (2021). Effects of cooling rate on the mechanical properties and precipitation behavior of carbides in H13 steel during quenching process. Materials Research Express, 8, Article No. 016503. https://doi.org/10.1088/2053-1591/abd4b6Ning, A., Mao, W., Chen, X., Guo, H., & Guo, J. (2017). Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering. Metals, 7(3), 70. https://doi.org/10.3390/met7030070Nyborg, L., Nylund, A., & Olefjord, I. (1988). Thickness determination of oxide layers on spherically-shaped metallicpowders by ESCA. Surface and Interface Analysis, 12(2), 110-114. https://doi.org/10.1002/sia.740120209Olalla, V. C., Bliznuk, V., Sanchez, N., Thibaux, P., Kestens, L. A. I., & Petrov, R. H. (2014). Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. Materials Science and Engineering: A, 604, 46-56. https://doi.org/10.1016/j.msea.2014.02.066Oro, R., Campos, M., Hryha, E., Torralba, J. M., & Nyborg, L. (2013). Surface phenomena during the early stages of sintering in steels modified with Fe–Mn–Si–C master alloys. Materials Characterization, 86, 80-91. https://doi.org/10.1016/j.matchar.2013.07.022Parry, L., Ashcroft, I. A., & Wildman, R. D. (2016). Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Additive Manufacturing, 12, 1-15. https://doi.org/10.1016/j.addma.2016.05.014Pavlina, E. J., & Van Tyne, C. J. (2008). Correlation of Yield Strength and Tensile Strength with Hardness for Steels. Journal of Materials Engineering and Performance, 17(6), 888-893. https://doi.org/10.1007/s11665-008-9225-5Pinkerton, A. J. (2010). Laser direct metal deposition: theory and applications in manufacturing and maintenance. In Advances in Laser Materials Processing (pp. 461-491).Polyanskiy, M. N. Refractive Index Database. Access Date: 20 November 2018. Retrieved from Available online: https://refractiveindex.infoPonnusamy, P., Masood, S. H., Palanisamy, S., Rahman Rashid, R. A., & Ruan, D. (2017). Characterization of 17-4PH alloy processed by selective laser melting. Materials Today: Proceedings, 4(8), 8498-8506. https://doi.org/10.1016/j.matpr.2017.07.196Qiu, C., Ravi, G. A., & Attallah, M. M. (2015). Microstructural control during direct laser deposition of a β-titanium alloy. Materials and Design, 81, 21-30. https://doi.org/10.1016/j.matdes.2015.05.031Robinson, J., Ashton, I., Fox, P., Jones, E., & Sutcliffe, C. (2018). Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Additive Manufacturing, 23, 13-24. https://doi.org/10.1016/j.addma.2018.07.001Rubenchik, A., Wu, S., Mitchell, S., Golosker, I., Leblanc, M., & Peterson, N. (2015). Direct measurements of temperature-dependent laser absorptivity of metal powders. Applied Optics, 54(24), 7230-7233. https://doi.org/10.1364/AO.54.007230Rubenchik, A. M., Wu, S. S. Q., Kanz, V. K., LeBlanc, M. M., Lowdermilk, W. H., Rotter, M. D., & J.R., S. (2014). Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces. Optical Engineering, 53, 122506:122501-122506:122508. https://doi.org/10.1117/1.OE.53.12.122506Sabzi, H. E. (2019). Powder bed fusion additive layer manufacturing of titanium alloys. Materials Science and Technology, 35(8), 875-890. https://doi.org/10.1080/02670836.2019.1602974Šafka, J., Ackermann, M., & Voleský, L. (2016). Structural properties of H13 tool steel parts produced with use of selective laser melting technology. Journal of Physics: Conference Series, 709, Article No. 012004. https://doi.org/10.1088/1742-6596/709/1/012004Salem, H., Carter, L. N., Attallah, M. M., & Salem, H. G. (2019). Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting. Materials Science and Engineering: A, 767, 138387. https://doi.org/10.1016/j.msea.2019.138387Salman, O. O., Brenne, F., Niendorf, T., Eckert, J., Prashanth, K. G., He, T., & Scudino, S. (2019). Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. Journal of Manufacturing Processes, 45, 255-261. https://doi.org/10.1016/j.jmapro.2019.07.010Salmi, A., Atzeni, E., Iuliano, L., & Galati, M. (2017). Experimental Analysis of Residual Stresses on AlSi10Mg Parts Produced by Means of Selective Laser Melting (SLM). Procedia CIRP, 62, 458-463. https://doi.org/10.1016/j.procir.2016.06.030Santos, L. M. S., Ferreira, J. A. M., Jesus, J. S., Costa, J. M., & Capela, C. (2016). Fatigue behaviour of selective laser melting steel components. Theoretical and Applied Fracture Mechanics,, 85, 9-15. https://doi.org/10.1016/j.tafmec.2016.08.011Sarkar, S., Mukherjee, S., Kumar, C. S., & Kumar Nath, A. (2020). Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process. Journal of Manufacturing Processes, 50, 279-294. https://doi.org/10.1016/j.jmapro.2019.12.048Schleifenbaum, H., Meiners, W., Wissenbach, K., & Hinke, C. (2010). Individualized production by means of high power Selective Laser Melting. CIRP Journal of Manufacturing Science and Technology, 2(3), 161-169. https://doi.org/10.1016/j.cirpj.2010.03.005Schneider, J., Lund, B., & Fullen, M. (2018). Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens. Additive Manufacturing, 21, 248-254. https://doi.org/10.1016/j.addma.2018.03.005Sciaky. The EBAM® 300 Series Produces the Largest 3D Printed Metal Parts & Prototypes in the Additive Manufacturing Market. Access Date: November 12, 2021. Retrieved from https://www.sciaky.com/largest-metal-3d-printer-availableShamsaei, N., Yadollahi, A., Bian, L., & Thompson, S. M. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Additive Manufacturing, 8, 12-35. https://doi.org/10.1016/j.addma.2015.07.002Shi, G., Ban, H., & Bijlaard, F. S. (2012). Tests and numerical study of ultra-high strength steel columns with end restraints. Journal of Constructional Steel Research, 70, 236-247. https://doi.org/10.1016/j.jcsr.2011.10.027Shiomi, M., Osakada, K., Nakamura, K., Yamashita, T., & Abe, F. (2004). Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Annals, 53(1), 195-198. https://doi.org/10.1016/s0007-8506(07)60677-5Shipley, H., McDonnell, D., Culleton, M., Coull, R., Lupoi, R., O'Donnell, G., & Trimble, D. (2018). Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. International Journal of Machine Tools and Manufacture, 128, 1-20. https://doi.org/10.1016/j.ijmachtools.2018.01.003Si, C., Tang, X., Zhang, X., Wang, J., & Wu, W. (2017). Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process. Materials and Design, 118, 66-74. https://doi.org/10.1016/j.matdes.2017.01.028Sillars, S. A., Sutcliffe, C. J., Philo, A. M., Brown, S. G. R., Sienz, J., & Lavery, N. P. (2017). The three-prong method: a novel assessment of residual stress in laser powder bed fusion. Virtual and Physical Prototyping, 13(1), 20-25. https://doi.org/10.1080/17452759.2017.1392682Simonelli, M., Tuck, C., Aboulkhair, N. T., Maskery, I., Ashcroft, I., Wildman, R. D., & Hague, R. (2015). A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V. Metallurgical and Materials Transactions A, 46(9), 3842-3851. https://doi.org/10.1007/s11661-015-2882-8SLM Solutions Group AG. SLM®800. Access Date: 1 June 2021. Retrieved from https://www.slm-solutions.com/en/products/machines/slmr800/Smith, A. F. (1981). The Tracer Diffusion of Transition-Metals in Duplex Oxide Grown on a T316 Stainless-Steel. Corrosion Science, 21(7), 517-529. https://doi.org/10.1016/0010-938X(81)90080-9Smith, A. F. (2013). The Diffusion of Chromium in Type 316 Stainless Steel. Metal Science, 9(1), 375-378. https://doi.org/10.1179/030634575790444270Smitll, A. F., & Hales, R. (2013). Diffusion of Manganese in Type 316 Austenitic Stainless Steel. Metal Science, 9(1), 181-184. https://doi.org/10.1179/030634575790444432Song, B., Dong, S., Liu, Q., Liao, H., & Coddet, C. (2014). Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior. Materials and Design, 54, 727-733. https://doi.org/10.1016/j.matdes.2013.08.085Song, J., Tang, Q., Feng, Q., Ma, S., Setchi, R., Liu, Y., Han, Q., Fan, X., & Zhang, M. (2019a). Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Optics and Laser Technology, 120, Article No. 105725. https://doi.org/10.1016/j.optlastec.2019.105725Song, J., Wu, W., Zhang, L., He, B., Lu, L., Ni, X., Long, Q., & Zhu, G. (2018). Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik, 170, 342-352. https://doi.org/10.1016/j.ijleo.2018.05.128Song, M., Sun, C., Chen, Y., Shang, Z., Li, J., Fan, Z., Hartwig, K. T., & Zhang, X. (2019b). Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade 91 steel processed by equal channel angular extrusion. International Journal of Pressure Vessels and Piping, 172, 212-219. https://doi.org/10.1016/j.ijpvp.2019.03.025Sun, Y., Hebert, R. J., & Aindow, M. (2018). Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting. Materials and Design, 140, 153-162. https://doi.org/10.1016/j.matdes.2017.11.063Sun, Y., & Zhao, O. (2019). Material response and local stability of high-chromium stainless steel welded I-sections. Engineering Structures, 178, 212–226. https://doi.org/10.1016/j.engstruct.2018.10.024Sun, Z., Tan, X., Tor, S. B., & Yeong, W. Y. (2016). Selective laser melting of stainless steel 316L with low porosity and high build rates. Materials and Design, 104, 197-204. https://doi.org/10.1016/j.matdes.2016.05.035Suryawanshi, J., Prashanth, K. G., & Ramamurty, U. (2017). Mechanical behavior of selective laser melted 316L stainless steel. Materials Science and Engineering: A, 696, 113-121. https://doi.org/10.1016/j.msea.2017.04.058Suwas, S., & Kumar, D. (2020). Microstructure–Texture–Mechanical Property Relationship in Alloys Produced by Additive Manufacturing Following Selective Laser Melting (SLM) Technique. Transactions of the Indian National Academy of Engineering, 5(1), 1-10. https://doi.org/10.1007/s41403-019-00081-xSyed, A. K., Ahmad, B., Guo, H., Machry, T., Eatock, D., Meyer, J., Fitzpatrick, M. E., & Zhang, X. (2019). An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Materials Science and Engineering: A, 755, 246-257. https://doi.org/10.1016/j.msea.2019.04.023Syed, W. U. H., Pinkerton, A. J., & Li, L. (2006). Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping. Applied Surface Science, 252(13), 4803-4808. https://doi.org/10.1016/j.apsusc.2005.08.118Tabor, D. (1951). Hardness of Metals. Clarendon Press, Oxford.Tan, P., Shen, F., Li, B., & Zhou, K. (2019). A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Materials and Design, 168. https://doi.org/10.1016/j.matdes.2019.107642Tang, Q., Chen, P., Chen, J., Chen, Y., & Chen, H. (2020). Numerical simulation of selective laser melting temperature conduction behavior of H13 steel in different models. Optik, 201. https://doi.org/10.1016/j.ijleo.2019.163336Tanvir, A. N. M., Ahsan, M. R. U., Seo, G., Bates, B., Lee, C., Liaw, P. K., Noakes, M., Nycz, A., Ji, C., & Kim, D. B. (2020). Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2020.04.085Thompson, S. M., Bian, L., Shamsaei, N., & Yadollahi, A. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 8, 36-62. https://doi.org/10.1016/j.addma.2015.07.001Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001Tolochko, N. K., Khlopkov, Y. V., Mozzharov, S. E., Ignatiev, M. B., Laoui, T., & Titov, V. I. (2000). Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal, 6(3), 155-161. https://doi.org/10.1108/13552540010337029Tomus, D., Tian, Y., Rometsch, P. A., Heilmaier, M., & Wu, X. (2016). Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting. Materials Science and Engineering: A, 667, 42-53. https://doi.org/10.1016/j.msea.2016.04.086Tonelli, L., Liverani, E., Valli, G., Fortunato, A., & Ceschini, L. (2019). Effects of powders and process parameters on density and hardness of A357 aluminum alloy fabricated by selective laser melting. The International Journal of Advanced Manufacturing Technology, 106(1-2), 371-383. https://doi.org/10.1007/s00170-019-04641-xTrapp, J., Rubenchik, A. M., Guss, G., & Matthews, M. J. (2017). In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Applied Materials Today, 9, 341-349. https://doi.org/10.1016/j.apmt.2017.08.006Vrancken, B., Cain, V., Knutsen, R., & Humbeeck, J. V. (2014). Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scripta Materialia, 87, 29-32. https://doi.org/10.1016/j.scriptamat.2014.05.016Wang, D. J. (2010). Thermal stability and sintering behavior of TiCuZrNiSn metallic glass. (Ph.D. Thesis), Harbin Institute of Technology, China. Wang, M., Li, W., Wu, Y., Li, S., Cai, C., Wen, S., Wei, Q., Shi, Y., Ye, F., & Chen, Z. (2018a). High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting. Metallurgical and Materials Transactions B, 50(1), 531-542. https://doi.org/10.1007/s11663-018-1442-1Wang, T., Zhang, Y., Wu, Z., & Shi, C. (2018b). Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum, 149, 185-189. https://doi.org/10.1016/j.vacuum.2017.12.034Wang, Y. M., Voisin, T., McKeown, J. T., Ye, J., Calta, N. P., Li, Z., Zeng, Z., Zhang, Y., Chen, W., Roehling, T. T., Ott, R. T., Santala, M. K., Depond, P. J., Matthews, M. J., Hamza, A. V., & Zhu, T. (2018c). Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 17(1), 63-71. https://doi.org/10.1038/nmat5021Wardenier, J. (2011). Hollow Sections in Structural Applications (2nd ed.). CIDECT, Geneva.Webster, G. A., & Wimpory, R. C. (2001). Non-destructive measurement of residual stress by neutron diffraction. Journal of Materials Processing Technology, 117(3), 395-399. https://doi.org/10.1016/S0924-0136(01)00802-0Wehmöller, M., Warnke, P. H., Zilian, C., & Eufinger, H. (2005). Implant design and production—a new approach by selective laser melting. International Congress Series, 1281, 690-695. https://doi.org/10.1016/j.ics.2005.03.155Wei, K., Lv, M., Zeng, X., Xiao, Z., Huang, G., Liu, M., & Deng, J. (2019). Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy. Materials Characterization, 150, 67-77. https://doi.org/10.1016/j.matchar.2019.02.010Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z., & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A, 772, Article No. 138799. https://doi.org/10.1016/j.msea.2019.138799Wen, S., Li, S., Wei, Q., Yan, C., Zhang, S., & Shi, Y. (2014). Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology, 214(11), 2660-2667. https://doi.org/10.1016/j.jmatprotec.2014.06.002Witteveen+Bos. 3D-printed concrete houses. Access Date: 16 June 2021. Retrieved from https://www.witteveenbos.com/projects/first-3d-printed-concrete-houses/Xiao, Z., Chen, C., Zhu, H., Hu, Z., Nagarajan, B., Guo, L., & Zeng, X. (2020). Study of residual stress in selective laser melting of Ti6Al4V. Materials and Design, 193. https://doi.org/10.1016/j.matdes.2020.108846Xie, Z., Dai, Y., Ou, X., Ni, S., & Song, M. (2020). Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti–6Al–4V alloy. Materials Science and Engineering: A, 776. https://doi.org/10.1016/j.msea.2020.139001Xiong, J., Zhang, G., Gao, H., & Wu, L. (2013). Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robotics and Computer-Integrated Manufacturing, 29(2), 417-423. https://doi.org/10.1016/j.rcim.2012.09.011Xu, J., Peng, Y., Zhou, Q., Fan, J., Kong, J., Wang, K., Guo, S., & Zhu, J. (2020). Microstructure and mechanical properties of Ti-52 at% Al alloy synthesized in-situ via dual-wires electron beam freeform fabrication. Materials Science and Engineering: A. https://doi.org/10.1016/j.msea.2020.140232Yadollahi, A., Shamsaei, N., Thompson, S. M., & Seely, D. W. (2015). Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Materials Science and Engineering: A, 644, 171-183. https://doi.org/10.1016/j.msea.2015.07.056Yadroitsava, I., Grewar, S., Hattingh, D., & Yadroitsev, I. (2015). Residual Stress in SLM Ti6Al4V Alloy Specimens. Materials Science Forum, 828-829, 305-310. https://doi.org/10.4028/www.scientific.net/MSF.828-829.305Yan, J.-J., Chen, M.-T., Quach, W.-M., Yan, M., & Young, B. (2019a). Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections. Thin-Walled Structures, 144, Article No. 106158. https://doi.org/10.1016/j.tws.2019.04.050Yan, J., Song, H., Dong, Y., Quach, W. M., & Yan, M. (2020). High strength (~2000 MPa) or highly ductile (~11%) additively manufactured H13 by tempering at different conditions. Materials Science and Engineering: A, 773, Article No. 138845. https://doi.org/10.1016/j.msea.2019.138845Yan, J. J., Zheng, D. L., Li, H. X., Jia, X., Sun, J. F., Li, Y. L., Qian, M., & Yan, M. (2017). Selective laser melting of H13: microstructure and residual stress. Journal of Materials Science, 52(20), 12476-12485. https://doi.org/10.1007/s10853-017-1380-3Yan, M., Dargusch, M. S., Ebel, T., & Qian, M. (2014). A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Materialia, 68, 196-206. https://doi.org/10.1016/j.actamat.2014.01.015Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O'Donnell, G., & Yin, S. (2019b). Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting. Materials Letters, 255. https://doi.org/10.1016/j.matlet.2019.126537Yang, C. L., Zhang, Z. J., Li, S. J., Liu, Y. J., Sercombe, T. B., Hou, W. T., Zhang, P., Zhu, Y. K., Hao, Y. L., Zhang, Z. F., & Yang, R. (2018). Simultaneous improvement in strength and plasticity of Ti-24Nb-4Zr-8Sn manufactured by selective laser melting. Materials and Design, 157, 52-59. https://doi.org/10.1016/j.matdes.2018.07.036Yang, J. (2019). 3D-printer bridges construction boundaries. Access Date: 12 June 2021. Retrieved from https://www.shine.cn/news/metro/1901148065/Yang, M., Dai, Y., Song, C., & Zhai, Q. (2010). Microstructure evolution of grey cast iron powder by high pressure gas atomization. Journal of Materials Processing Technology, 210(2), 351-355. https://doi.org/10.1016/j.jmatprotec.2009.09.023Yang, T. Y., WEN, W., Yin, G. Z., Li, X. L., Gao, M., Y.L., G., L., L., Liu, H., H., L., X.M., Z., B, Z., T.K., L., Y.G., Y., Z., L., & X.Y., Z. (2015). Introduction of the X-ray diffraction beamline of SSRF. Nuclear Science and Techniques, 26(2), 1-5. https://doi.org/10.13538/j.1001-8042/nst.26.020101Yao, Y., Huang, Y., Chen, B., Tan, C., Su, Y., & Feng, J. (2018). Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Optics and Laser Technology, 105, 171-179. https://doi.org/10.1016/j.optlastec.2018.03.011Yao, Y., Quach, W.-M., & Young, B. (2020). Simplified models for residual stresses and equivalent plastic strains in cold-formed steel elliptical hollow sections. Thin-Walled Structures, 154. https://doi.org/10.1016/j.tws.2020.106835Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4). https://doi.org/10.1063/1.4935926Yasa, E., Deckers, J., & Kruth, J. P. (2011). The investigation of the influence of laser re‐melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyping Journal, 17(5), 312-327. https://doi.org/10.1108/13552541111156450Yong, Q. L. (2006). Secondary Phases in Steels. Beijing: Metallurgy Industry Press.Zaeh, M. F., & Branner, G. (2009). Investigations on residual stresses and deformations in selective laser melting. Production Engineering, 4(1), 35-45. https://doi.org/10.1007/s11740-009-0192-yZhang, B., Dembinski, L., & Coddet, C. (2013). The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A, 584, 21-31. https://doi.org/10.1016/j.msea.2013.06.055Zhang, H., Gu, D., Dai, D., Ma, C., Li, Y., Peng, R., Li, S., Liu, G., & Yang, B. (2020). Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al–Mg alloy produced by selective laser melting. Materials Science and Engineering: A, 788. https://doi.org/10.1016/j.msea.2020.139593Zhang, J., Song, B., Wei, Q., Bourell, D., & Shi, Y. (2019a). A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. Journal of Materials Science & Technology, 35(2), 270-284. https://doi.org/10.1016/j.jmst.2018.09.004Zhang, L., Tan, K. H., & Zhao, O. (2019b). Experimental and numerical studies of fixed-ended cold-formed stainless steel equal-leg angle section columns. Engineering Structures, 184, 134–144. https://doi.org/10.1016/j.engstruct.2019.01.083Zhang, P., Li, S. X., & Zhang, Z. F. (2011). General relationship between strength and hardness. Materials Science and Engineering: A, 529, 62-73. https://doi.org/10.1016/j.msea.2011.08.061Zhang, Y., Zhan, D., Qi, X., & Jiang, Z. (2018). Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel. Materials Characterization, 144, 393-399. https://doi.org/10.1016/j.matchar.2018.07.038Zhao, Y. H., Liao, X. Z., Jin, Z., Valiev, R. Z., & Zhu, Y. T. (2004). Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia, 52(15), 4589-4599. https://doi.org/10.1016/j.actamat.2004.06.017Zheng, B., Zhou, Y., Smugeresky, J. E., Schoenung, J. M., & Lavernia, E. J. (2008). Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. numerical calculations. Metallurgical and Materials Transactions A, 39(9), 2228-2236. https://doi.org/10.1007/s11661-008-9557-7Zhou, L., Yuan, T., Li, R., Tang, J., Wang, M., Li, L., & Chen, C. (2019a). Microstructure and mechanical performance tailoring of Ti-13Nb-13Zr alloy fabricated by selective laser melting after post heat treatment. Journal of Alloys and Compounds, 775, 1164-1176. https://doi.org/10.1016/j.jallcom.2018.10.030Zhou, Y. H., Li, W. P., Wang, D. W., Zhang, L., Ohara, K., Shen, J., Ebel, T., & Yan, M. (2019b). Selective laser melting enabled additive manufacturing of Ti–22Al–25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated. Acta Materialia, 173, 117-129. https://doi.org/10.1016/j.actamat.2019.05.008Zhou, Y. H., Li, W. P., Zhang, L., Zhou, S. Y., Jia, X., Wang, D. W., & Yan, M. (2020). Selective laser melting of Ti–22Al–25Nb intermetallic: Significant effects of hatch distance on microstructural features and mechanical properties. Journal of Materials Processing Technology, 276. https://doi.org/10.1016/j.jmatprotec.2019.116398Zhou, Y. H., Lin, S. F., Hou, Y. H., Wang, D. W., Zhou, P., Han, P. L., Li, Y. L., & Yan, M. (2018). Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting. Applied Surface Science, 441, 210-217. https://doi.org/10.1016/j.apsusc.2018.01.296Zhou, Y. H., Zhang, Z. H., Wang, Y. P., Liu, G., Zhou, S. Y., Li, Y. L., Shen, J., & Yan, M. (2019c). Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Additive Manufacturing, 25, 204-217. https://doi.org/10.1016/j.addma.2018.10.046Zhu, J., Zhang, Z., & Xie, J. (2019). Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism. Materials Science and Engineering: A, 752, 101-114. https://doi.org/10.1016/j.msea.2019.02.085Zhu, Z. G., Nguyen, Q. B., Ng, F. L., An, X. H., Liao, X. Z., Liaw, P. K., Nai, S. M. L., & Wei, J. (2018). Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scripta Materialia, 154, 20-24. https://doi.org/10.1016/j.scriptamat.2018.05.015Zopp, C., Blümer, S., Schubert, F., & Kroll, L. (2017). Processing of a metastable titanium alloy (Ti-5553) by selective laser melting. Ain Shams Engineering Journal, 8(3), 475-479. https://doi.org/10.1016/j.asej.2016.11.004

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335910
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Yan JJ. Material and structural behavior of additive manufactured high strength steel hollow sections[D]. 澳门. 澳门大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11653004-严菊杰-材料科学与工程(13675KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[严菊杰]的文章
百度学术
百度学术中相似的文章
[严菊杰]的文章
必应学术
必应学术中相似的文章
[严菊杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。