[1] 国务院. 国务院关于印发2030 年前碳达峰行动方案的通知[Z]. 2021.
[2] 新华社. 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意 见[Z]. 2021.
[3] IANNUZZI M, BARNOUSH A, JOHNSEN R. Materials and Corrosion Trends in Offshore and Subsea Oil and Gas Production[J]. npj Materials Degradation, 2017, 1(1): 1-11.
[4] 世界钢铁协会. 世界钢铁统计数据[Z]. 2020.
[5] BYRNES M, GRUJICIC M, OWEN W. Nitrogen Strengthening of a Stable Austenitic Stainless Steel[J]. Acta Metallurgica, 1987, 35(7): 1853-1862.
[6] FU L, FANG H. Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics[J]. Metals, 2018, 8(11): 940.
[7] JOHNSON W H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids[J]. Nature, 1875, 11(281): 393-393.
[8] COMMITTEE T B P O. Report on the A354 Grade BD High-strength Steel Rods on the New East Span of the San Francisco-Oakland Bay Bridge with Findings and Decisions[R]. 2013.
[9] DWIVEDI S K, VISHWAKARMA M. Hydrogen Embrittlement in Different Materials: A Review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616.
[10] SALVI B L, SUBRAMANIAN K A. Sustainable Development of Road Transportation Sector Using Hydrogen Energy System[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1132-1155.
[11] BEACHEM C D. A New Model for Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”) [J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441-455.
[12] MOLLA R S. A Study on Manufacturing of Deformed Bar (G 60-400W) at Elite Iron and Steel Industries[R]. International University of Business Agriculture and Technology, 2018: 151.
[13] LI X, MA X, ZHANG J, et al. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
[14] GAI X, LAZAUSKAS T, SMITH R, et al. Helium Bubbles in Bcc Fe and Their Interactions with Irradiation[J]. Journal of Nuclear Materials, 2015, 462: 382-390.
[15] FERREIRA P J, ROBERTSON I M, BIRNBAUM H K. Hydrogen Effects on the Interaction between Dislocations[J]. Acta Materialia, 1998, 46(5): 1749-1757.
[16] ASHBY M, SHERCLIFF H, CEBON D. Materials: Engineering, Science, Processing and Design[M]. Oxford: Elsevier, 2007.
[17] PSIACHOS D. Ab Initio Parametrized Model of Strain-Dependent Solubility of H in 𝛼-Iron [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(3): 035011.
[18] GONG P, NUTTER J, Rivera-Diaz-Del-Castillo P E J, et al. Hydrogen Embrittlement through the Formation of Low-Energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels[J]. Science Advances, 2020, 6(46): eabb6152.
[19] BIRNBAUM H K, SOFRONIS P. Hydrogen-Enhanced Localized Plasticity—a Mechanism for Hydrogen-Related Fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[20] SANCHEZ J, FULLEA J, ANDRADE C, et al. Hydrogen in 𝛼-Iron: Stress and Diffusion[J]. Physical Review B, 2008, 78(1): 014113.
[21] MATSUMOTO R, INOUE Y, TAKETOMI S, et al. Influence of Shear Strain on the Hydrogen Trapped in Bcc-Fe: A First-Principles-Based Study[J]. Scripta Materialia, 2009, 60(7): 555- 558.
[22] COTTRELL A H, BILBY B A. Dislocation Theory of Yielding and Strain Ageing of Iron[J]. Proceedings of the Physical Society. Section A, 1949, 62(1): 49-62.
[23] COCHARDT A W, SCHOEK G, WIEDERSICH H. Interaction between Dislocations and Interstitial Atoms in Body-Centered Cubic Metals[J]. Acta Metallurgica, 1955, 3(6): 533-537.
[24] VARVENNE C, CLOUET E. Elastic Dipoles of Point Defects from Atomistic Simulations[J]. Physical Review B, 2017, 96(22): 224103.
[25] BACON D. On the Carbon Dislocation Interaction in Iron[J]. Scripta Metallurgica, 1969, 3 (10): 735-740.
[26] SCHOECK G. The Interaction Energy between Dislocations and Interstitial Atoms[J]. Scripta Metallurgica, 1969, 3(4): 239-241.
[27] DOUTHWAITE R, EVANS J. Interaction between a Tetragonal Distortion and a 〈111〉 Screw Dislocation in an Anisotropic Cubic Crystal[J]. Scripta Metallurgica, 1973, 7(10): 1019-1026.
[28] CLOUET E, GARRUCHET S, NGUYEN H, et al. Dislocation Interaction with C in 𝛼-Fe: A Comparison between Atomic Simulations and Elasticity Theory[J]. Acta Materialia, 2008, 56 (14): 3450-3460.
[29] VEGARD L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome[J]. Zeitschrift für Physik, 1921, 5(1): 17-26.
[30] HANLUMYUANG Y, GORDON P, ET AL NEERAJ T. Interactions between Carbon Solutes and Dislocations in Bcc Iron[J]. Acta Materialia, 2010, 58(16): 5481-5490.
[31] BAROUH C, SCHULER T, FU C C, et al. Interaction between Vacancies and Interstitial Solutes (C, N, and O) in 𝛼-Fe: From Electronic Structure to Thermodynamics[J]. Phys. Rev. B, 2014, 90(5): 054112.
[32] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density[J]. Computational Materials Science, 2006, 36(3): 354-360.
[33] PROVILLE L, RODNEY D, MARINICA M C. Quantum Effect on Thermally Activated Glide of Dislocations[J]. Nature Materials, 2012, 11(10): 845-849.
[34] JIANG D E, CARTER E A. Diffusion of Interstitial Hydrogen into and through Bcc Fe from First Principles[J]. Phys. Rev. B, 2004, 70(6): 064102.
[35] TAKETOMI S, MATSUMOTO R, MIYAZAKI N. Atomistic Study of Hydrogen Distribution and Diffusion around a {112}<111> Edge Dislocation in Alpha Iron[J]. Acta Materialia, 2008, 56(15): 3761-3769.
[36] LEANI J J, ROBLEDO J I, SÁNCHEZ H J. Energy Dispersive Inelastic X-ray Scattering Spectroscopy – A Review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 154: 10-24.
[37] HAGHDADI N, LALEH M, MOYLE M, et al. Additive Manufacturing of Steels: A Review of Achievements and Challenges[J]. Journal of Materials Science, 2021, 56(1): 64-107.
[38] SPENCE⟂ J C H, KOLAR H R, HEMBREE G, et al. Imaging Dislocation Cores – the Way Forward[J]. Philosophical Magazine, 2006, 86(29-31): 4781-4796.
[39] CHEN Y, LU H, LIANG J, et al. Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates[J]. Science, 2020.
[40] WEN M, FUKUYAMA S, YOKOGAWA K. Atomistic Simulations of Effect of Hydrogen on Kink-Pair Energetics of Screw Dislocations in Bcc Iron[J]. Acta Materialia, 2003, 51(6): 1767-1773.
[41] LARSEN A H, MORTENSEN J J, BLOMQVIST J, et al. The Atomic Simulation Environment— a Python Library for Working with Atoms[J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002.
[42] KRESSE G, FURTHMÜLLER J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[43] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[ J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[44] MOMMA K, IZUMI F. VESTA3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276.
[45] BORN M, OPPENHEIMER R. Zur Quantentheorie Der Molekeln[J]. Annalen der Physik, 1927, 389(20): 457-484.
[46] SZABO A, OSTLUND N S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory[M]. First ed. Mineola: Dover Publications, Inc., 1996.
[47] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136 (3B): B864-B871.
[48] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[49] SHOLL D S, STECKEL J A. Density Functional Theory: A Practical Introduction[M]. Wiley, 2009.
[50] KRESSE G, JOUBERT D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Physical Review B, 1999, 59(3): 1758-1775.
[51] BLÖCHL P E, JEPSEN O, ANDERSEN O K. Improved Tetrahedron Method for Brillouin-zone Integrations[J]. Physical Review B, 1994, 49(23): 16223-16233.
[52] MONKHORST H J, PACK J D. Special Points for Brillouin-zone Integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[53] ALCHAGIROV A B, PERDEW J P, BOETTGER J C, et al. Energy and Pressure versus Volume: Equations of State Motivated by the Stabilized Jellium Model[J]. Physical Review B, 2001, 63(22): 224115.
[54] ZHANG G X, REILLY A M, TKATCHENKO A, et al. Performance of Various Density- Functional Approximations for Cohesive Properties of 64 Bulk Solids[J]. New Journal of Physics, 2018, 20(6): 063020.
[55] JANTHON P, LUO S A, KOZLOV S M, et al. Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals[J]. Journal of Chemical Theory and Computation, 2014, 10(9): 3832-3839.
[56] VOIGT W. Lehrbuch Der Kristallphysik:(Mit Ausschluss Der Kristalloptik): volume 34[M]. BG Teubner, 1910.
[57] René de Cotret L P, OTTO M R, ET AL STERN M J. An Open-Source Software Ecosystem for the Interactive Exploration of Ultrafast Electron Scattering Data[J]. Advanced Structural and Chemical Imaging, 2018, 4(1): 11.
[58] CARO M A, SCHULZ S, O’REILLY E P. Comparison of Stress and Total Energy Methods for Calculation of Elastic Properties of Semiconductors[J]. Journal of Physics: Condensed Matter, 2012, 25(2): 025803.
[59] GAILLAC R, PULLUMBI P, COUDERT F X. ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors[J]. Journal of Physics: Condensed Matter, 2016, 28(27): 275201.
[60] STROH A N. Dislocations and Cracks in Anisotropic Elasticity[J]. Philosophical Magazine, 1958, 3: 625-646.
[61] BECKER C A, TAVAZZA F, TRAUTT Z T, et al. Considerations for Choosing and Using Force Fields and Interatomic Potentials in Materials Science and Engineering[J]. Current Opinion in Solid State and Materials Science, 2013, 17(6): 277-283.
[62] HALE L M, TRAUTT Z T, BECKER C A. Evaluating Variability with Atomistic Simulations: The Effect of Potential and Calculation Methodology on the Modeling of Lattice and Elastic Constants[J]. Modelling and Simulation in Materials Science and Engineering, 2018, 26(5): 055003.
[63] PULAY P. Convergence Acceleration of Iterative Sequences. the Case of Scf Iteration[J]. Chemical Physics Letters, 1980, 73(2): 393-398.
[64] HESTENES M R, STIEFEL E. Methods of Conjugate Gradients for Solving Linear Systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 28.
[65] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[66] SHEPPARD D, XIAO P, CHEMELEWSKI W, et al. A Generalized Solid-State Nudged Elastic Band Method[J]. The Journal of Chemical Physics, 2012, 136(7): 074103.
[67] HIRTH J P. Effects of Hydrogen on the Properties of Iron and Steel[J]. Metallurgical Transactions A, 1980, 11(6): 861-890.
[68] TANG W, SANVILLE E, HENKELMAN G. A Grid-Based Bader Analysis Algorithm without Lattice Bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 084204.
[69] HENKELMAN G, JÓNSSON H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985.
[70] MORTENSEN J J, HANSEN L B, JACOBSEN K W. Real-Space Grid Implementation of the Projector Augmented Wave Method[J]. Physical Review B, 2005, 71(3): 035109.
[71] RAYNE J, CHANDRASEKHAR B. Elastic Constants of Iron from 4.2 to 300 K[J]. Physical Review, 1961, 122(6): 1714.
[72] ZHANG H L, LU S, PUNKKINEN M P J, et al. Static Equation of State of Bcc Iron[J]. Phys. Rev. B, 2010, 82(13): 132409.
[73] WANG S, TAKAHASHI K, HASHIMOTO N, et al. Strain Field of Interstitial Hydrogen Atom in Body-Centered Cubic Iron and Its Effect on Hydrogen–Dislocation Interaction[J]. Scripta Materialia, 2013, 68(5): 249-252.
[74] WILLAIME F, FU C C. First Principles Calculations of Helium Solution Energies in BCC Transition Metals[J]. MRS Proceedings, 2006, 981: 0981-JJ05-04.
[75] LIU Y, GUI L, JIN S. Ab initio investigation on mechanical properties of copper[J]. Chinese Physics B, 2012, 21(9): 96102-096102.
[76] KITTEL C, MCEUEN P, MCEUEN P. Introduction to Solid State Physics: volume 8[M]. Wiley New York, 1996.
[77] KAMRAN S, CHEN K, CHEN L. Ab Initio Examination of Ductility Features of Fcc Metals[J]. Physical Review B, 2009, 79(2): 024106.
[78] SIMMONS G, WANG H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook[M]. Cambridge, Mass., M.I.T. Press, 1971.
[79] HAYWARD E, FU C C. Interplay between Hydrogen and Vacancies in 𝛼-Fe[J]. Physical Review B, 2013, 87(17): 174103.
[80] HAYASHI Y, HAGI H, TAHARA A . Diffusion Coefficients of Hydrogen and Deuterium in Iron Determined by Permeation with Gas, Ion and Electrochemical Charging[J]. Zeitschrift fuer Physikalische Chemie, Neue Folge, 1989, 164(pt1): 815-820.
[81] TAPASA K, OSETSKY Y, BACON D. Computer Simulation of Interaction of an Edge Dislocation with a Carbon Interstitial in 𝛼-Iron and Effects on Glide[J]. Acta Materialia, 2007, 55 (1): 93-104.
[82] NAGANO M, HAYASHI Y, OHTANI N, et al. Hydrogen Diffusivity in High Purity Alpha Iron [J]. Scripta Metallurgica, 1982, 16(8): 973-976.
[83] MAGNUSSON H, FRISK K. Diffusion, Permeation and Solubility of Hydrogen in Copper[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(1): 65-69.
[84] EBISUZAKI Y, KASS W J, KEEFFE M. Diffusion and Solubility of Hydrogen in Single Crystals of Nickel and Nickel—Vanadium Alloy[J]. The Journal of Chemical Physics, 1967, 46(4): 1378-1381.
修改评论