中文版 | English
题名

基于第一性原理的 α-Fe 固溶原子与位错相互作用研究

姓名
姓名拼音
ZHENG Zhilin
学号
11930499
学位类型
硕士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
王帅
导师单位
机械与能源工程系
论文答辩日期
2022-05-09
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

以 α-Fe 为主要成分的钢的力学性能极易被氢和氦元素破坏,导致无预警地提前断裂,出现氢脆和氦脆现象,造成严重安全隐患。尽管针对氢脆和氦脆机理的研究已经进行了近 150 年,学界尚未对此形成统一认知。实验证据表明,氢和氦固溶原子与位错之间的相互作用对氢脆和氦脆的贡献不可忽略,然而相关机理尚不明晰。本文基于弹性力学和密度泛函理论,研究 α-Fe 中氢和氦固溶原子与位错的相互作用,根据体系总能量变化分析固溶原子溶解位置,根据过渡态理论计算固溶原子扩散行为,基于费米狄拉克统计规律预测位错周围固溶原子浓度分布。结果显示,α-Fe 的位错弹性区,氦固溶原子不会发生溶解位置转移,而氢在特定区域将发生溶解位置转移。当氢从四面体间隙扩散经过八面体间隙时,将被异常地捕获于八面体间隙中。氢固溶原子的异常捕获现象提升了其扩散速率,且增强了在位错周围的聚集效应。本文使用的计算方法可推广至其他固溶体,用于分析位错与固溶原子的相互作用、预测固溶原子的溶解状态、扩散行为和浓度分布。发现的氢在位错周围的异常溶解现象,对于理解氢脆机理、提升钢材服役可靠性、降低维护成本、实现能源结构的绿色转型有一定指导意义。

其他摘要

The mechanical properties of steels with α-Fe as the main component are easily destroyed by hydrogen and helium elements, resulting in no-warning immature cracks, which are referred as hydrogen embrittlement and helium embrittlement, causing serious safety hazards.  Although the research on the mechanism of hydrogen embrittlement and helium embrittlement has been carried out for nearly 150 years, the academic community has not yet formed a unified understanding of this.  Experimental evidence shows that the interaction between hydrogen and helium solute atoms and dislocations contributes non-negligiblly to hydrogen embrittlement and helium embrittlement, but the related mechanism is not clear yet.  Based on elastic mechanics and density functional theory, this thesis studies the interaction of hydrogen and helium solute atoms and dislocations in α-Fe.  The diffusion behavior of solute atoms is calculated based on transition state theory, and the concentration distribution of solute atoms around dislocations is predicted based on the Fermi-Dirac statistical law.  The results show that, in the dislocation elastic region of α-Fe, helium solute atoms will not undergo dissolution position transfer, while hydrogen will undergo dissolution position transfer in a specific region.  When hydrogen diffuses from the tetrahedral site and through the octahedral site, it is abnormally trapped in the octahedral site.  The abnormal trapping of hydrogen solute atoms increases its diffusion rate and enhances the aggregation effect around dislocations.  The computational method used in this thesis can be extended to other solutes to analyze the interaction of dislocations with solute atoms, predict the dissolution state, diffusion behavior and concentration distribution of solute atoms.  The discovered abnormal dissolution of hydrogen around dislocations has certain guiding significance for understanding the mechanism of hydrogen embrittlement, improving the service reliability of steel, reducing maintenance costs, and realizing the green transformation of the energy structure.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] 国务院. 国务院关于印发2030 年前碳达峰行动方案的通知[Z]. 2021.
[2] 新华社. 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意 见[Z]. 2021.
[3] IANNUZZI M, BARNOUSH A, JOHNSEN R. Materials and Corrosion Trends in Offshore and Subsea Oil and Gas Production[J]. npj Materials Degradation, 2017, 1(1): 1-11.
[4] 世界钢铁协会. 世界钢铁统计数据[Z]. 2020.
[5] BYRNES M, GRUJICIC M, OWEN W. Nitrogen Strengthening of a Stable Austenitic Stainless Steel[J]. Acta Metallurgica, 1987, 35(7): 1853-1862.
[6] FU L, FANG H. Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics[J]. Metals, 2018, 8(11): 940.
[7] JOHNSON W H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids[J]. Nature, 1875, 11(281): 393-393.
[8] COMMITTEE T B P O. Report on the A354 Grade BD High-strength Steel Rods on the New East Span of the San Francisco-Oakland Bay Bridge with Findings and Decisions[R]. 2013.
[9] DWIVEDI S K, VISHWAKARMA M. Hydrogen Embrittlement in Different Materials: A Review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616.
[10] SALVI B L, SUBRAMANIAN K A. Sustainable Development of Road Transportation Sector Using Hydrogen Energy System[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1132-1155.
[11] BEACHEM C D. A New Model for Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”) [J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441-455.
[12] MOLLA R S. A Study on Manufacturing of Deformed Bar (G 60-400W) at Elite Iron and Steel Industries[R]. International University of Business Agriculture and Technology, 2018: 151.
[13] LI X, MA X, ZHANG J, et al. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
[14] GAI X, LAZAUSKAS T, SMITH R, et al. Helium Bubbles in Bcc Fe and Their Interactions with Irradiation[J]. Journal of Nuclear Materials, 2015, 462: 382-390.
[15] FERREIRA P J, ROBERTSON I M, BIRNBAUM H K. Hydrogen Effects on the Interaction between Dislocations[J]. Acta Materialia, 1998, 46(5): 1749-1757.
[16] ASHBY M, SHERCLIFF H, CEBON D. Materials: Engineering, Science, Processing and Design[M]. Oxford: Elsevier, 2007.
[17] PSIACHOS D. Ab Initio Parametrized Model of Strain-Dependent Solubility of H in 𝛼-Iron [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(3): 035011.
[18] GONG P, NUTTER J, Rivera-Diaz-Del-Castillo P E J, et al. Hydrogen Embrittlement through the Formation of Low-Energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels[J]. Science Advances, 2020, 6(46): eabb6152.
[19] BIRNBAUM H K, SOFRONIS P. Hydrogen-Enhanced Localized Plasticity—a Mechanism for Hydrogen-Related Fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191-202.
[20] SANCHEZ J, FULLEA J, ANDRADE C, et al. Hydrogen in 𝛼-Iron: Stress and Diffusion[J]. Physical Review B, 2008, 78(1): 014113.
[21] MATSUMOTO R, INOUE Y, TAKETOMI S, et al. Influence of Shear Strain on the Hydrogen Trapped in Bcc-Fe: A First-Principles-Based Study[J]. Scripta Materialia, 2009, 60(7): 555- 558.
[22] COTTRELL A H, BILBY B A. Dislocation Theory of Yielding and Strain Ageing of Iron[J]. Proceedings of the Physical Society. Section A, 1949, 62(1): 49-62.
[23] COCHARDT A W, SCHOEK G, WIEDERSICH H. Interaction between Dislocations and Interstitial Atoms in Body-Centered Cubic Metals[J]. Acta Metallurgica, 1955, 3(6): 533-537.
[24] VARVENNE C, CLOUET E. Elastic Dipoles of Point Defects from Atomistic Simulations[J]. Physical Review B, 2017, 96(22): 224103.
[25] BACON D. On the Carbon Dislocation Interaction in Iron[J]. Scripta Metallurgica, 1969, 3 (10): 735-740.
[26] SCHOECK G. The Interaction Energy between Dislocations and Interstitial Atoms[J]. Scripta Metallurgica, 1969, 3(4): 239-241.
[27] DOUTHWAITE R, EVANS J. Interaction between a Tetragonal Distortion and a 〈111〉 Screw Dislocation in an Anisotropic Cubic Crystal[J]. Scripta Metallurgica, 1973, 7(10): 1019-1026.
[28] CLOUET E, GARRUCHET S, NGUYEN H, et al. Dislocation Interaction with C in 𝛼-Fe: A Comparison between Atomic Simulations and Elasticity Theory[J]. Acta Materialia, 2008, 56 (14): 3450-3460.
[29] VEGARD L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome[J]. Zeitschrift für Physik, 1921, 5(1): 17-26.
[30] HANLUMYUANG Y, GORDON P, ET AL NEERAJ T. Interactions between Carbon Solutes and Dislocations in Bcc Iron[J]. Acta Materialia, 2010, 58(16): 5481-5490.
[31] BAROUH C, SCHULER T, FU C C, et al. Interaction between Vacancies and Interstitial Solutes (C, N, and O) in 𝛼-Fe: From Electronic Structure to Thermodynamics[J]. Phys. Rev. B, 2014, 90(5): 054112.
[32] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density[J]. Computational Materials Science, 2006, 36(3): 354-360.
[33] PROVILLE L, RODNEY D, MARINICA M C. Quantum Effect on Thermally Activated Glide of Dislocations[J]. Nature Materials, 2012, 11(10): 845-849.
[34] JIANG D E, CARTER E A. Diffusion of Interstitial Hydrogen into and through Bcc Fe from First Principles[J]. Phys. Rev. B, 2004, 70(6): 064102.
[35] TAKETOMI S, MATSUMOTO R, MIYAZAKI N. Atomistic Study of Hydrogen Distribution and Diffusion around a {112}<111> Edge Dislocation in Alpha Iron[J]. Acta Materialia, 2008, 56(15): 3761-3769.
[36] LEANI J J, ROBLEDO J I, SÁNCHEZ H J. Energy Dispersive Inelastic X-ray Scattering Spectroscopy – A Review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 154: 10-24.
[37] HAGHDADI N, LALEH M, MOYLE M, et al. Additive Manufacturing of Steels: A Review of Achievements and Challenges[J]. Journal of Materials Science, 2021, 56(1): 64-107.
[38] SPENCE⟂ J C H, KOLAR H R, HEMBREE G, et al. Imaging Dislocation Cores – the Way Forward[J]. Philosophical Magazine, 2006, 86(29-31): 4781-4796.
[39] CHEN Y, LU H, LIANG J, et al. Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates[J]. Science, 2020.
[40] WEN M, FUKUYAMA S, YOKOGAWA K. Atomistic Simulations of Effect of Hydrogen on Kink-Pair Energetics of Screw Dislocations in Bcc Iron[J]. Acta Materialia, 2003, 51(6): 1767-1773.
[41] LARSEN A H, MORTENSEN J J, BLOMQVIST J, et al. The Atomic Simulation Environment— a Python Library for Working with Atoms[J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002.
[42] KRESSE G, FURTHMÜLLER J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[43] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[ J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[44] MOMMA K, IZUMI F. VESTA3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276.
[45] BORN M, OPPENHEIMER R. Zur Quantentheorie Der Molekeln[J]. Annalen der Physik, 1927, 389(20): 457-484.
[46] SZABO A, OSTLUND N S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory[M]. First ed. Mineola: Dover Publications, Inc., 1996.
[47] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136 (3B): B864-B871.
[48] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[49] SHOLL D S, STECKEL J A. Density Functional Theory: A Practical Introduction[M]. Wiley, 2009.
[50] KRESSE G, JOUBERT D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Physical Review B, 1999, 59(3): 1758-1775.
[51] BLÖCHL P E, JEPSEN O, ANDERSEN O K. Improved Tetrahedron Method for Brillouin-zone Integrations[J]. Physical Review B, 1994, 49(23): 16223-16233.
[52] MONKHORST H J, PACK J D. Special Points for Brillouin-zone Integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[53] ALCHAGIROV A B, PERDEW J P, BOETTGER J C, et al. Energy and Pressure versus Volume: Equations of State Motivated by the Stabilized Jellium Model[J]. Physical Review B, 2001, 63(22): 224115.
[54] ZHANG G X, REILLY A M, TKATCHENKO A, et al. Performance of Various Density- Functional Approximations for Cohesive Properties of 64 Bulk Solids[J]. New Journal of Physics, 2018, 20(6): 063020.
[55] JANTHON P, LUO S A, KOZLOV S M, et al. Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals[J]. Journal of Chemical Theory and Computation, 2014, 10(9): 3832-3839.
[56] VOIGT W. Lehrbuch Der Kristallphysik:(Mit Ausschluss Der Kristalloptik): volume 34[M]. BG Teubner, 1910.
[57] René de Cotret L P, OTTO M R, ET AL STERN M J. An Open-Source Software Ecosystem for the Interactive Exploration of Ultrafast Electron Scattering Data[J]. Advanced Structural and Chemical Imaging, 2018, 4(1): 11.
[58] CARO M A, SCHULZ S, O’REILLY E P. Comparison of Stress and Total Energy Methods for Calculation of Elastic Properties of Semiconductors[J]. Journal of Physics: Condensed Matter, 2012, 25(2): 025803.
[59] GAILLAC R, PULLUMBI P, COUDERT F X. ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors[J]. Journal of Physics: Condensed Matter, 2016, 28(27): 275201.
[60] STROH A N. Dislocations and Cracks in Anisotropic Elasticity[J]. Philosophical Magazine, 1958, 3: 625-646.
[61] BECKER C A, TAVAZZA F, TRAUTT Z T, et al. Considerations for Choosing and Using Force Fields and Interatomic Potentials in Materials Science and Engineering[J]. Current Opinion in Solid State and Materials Science, 2013, 17(6): 277-283.
[62] HALE L M, TRAUTT Z T, BECKER C A. Evaluating Variability with Atomistic Simulations: The Effect of Potential and Calculation Methodology on the Modeling of Lattice and Elastic Constants[J]. Modelling and Simulation in Materials Science and Engineering, 2018, 26(5): 055003.
[63] PULAY P. Convergence Acceleration of Iterative Sequences. the Case of Scf Iteration[J]. Chemical Physics Letters, 1980, 73(2): 393-398.
[64] HESTENES M R, STIEFEL E. Methods of Conjugate Gradients for Solving Linear Systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 28.
[65] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[66] SHEPPARD D, XIAO P, CHEMELEWSKI W, et al. A Generalized Solid-State Nudged Elastic Band Method[J]. The Journal of Chemical Physics, 2012, 136(7): 074103.
[67] HIRTH J P. Effects of Hydrogen on the Properties of Iron and Steel[J]. Metallurgical Transactions A, 1980, 11(6): 861-890.
[68] TANG W, SANVILLE E, HENKELMAN G. A Grid-Based Bader Analysis Algorithm without Lattice Bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 084204.
[69] HENKELMAN G, JÓNSSON H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985.
[70] MORTENSEN J J, HANSEN L B, JACOBSEN K W. Real-Space Grid Implementation of the Projector Augmented Wave Method[J]. Physical Review B, 2005, 71(3): 035109.
[71] RAYNE J, CHANDRASEKHAR B. Elastic Constants of Iron from 4.2 to 300 K[J]. Physical Review, 1961, 122(6): 1714.
[72] ZHANG H L, LU S, PUNKKINEN M P J, et al. Static Equation of State of Bcc Iron[J]. Phys. Rev. B, 2010, 82(13): 132409.
[73] WANG S, TAKAHASHI K, HASHIMOTO N, et al. Strain Field of Interstitial Hydrogen Atom in Body-Centered Cubic Iron and Its Effect on Hydrogen–Dislocation Interaction[J]. Scripta Materialia, 2013, 68(5): 249-252.
[74] WILLAIME F, FU C C. First Principles Calculations of Helium Solution Energies in BCC Transition Metals[J]. MRS Proceedings, 2006, 981: 0981-JJ05-04.
[75] LIU Y, GUI L, JIN S. Ab initio investigation on mechanical properties of copper[J]. Chinese Physics B, 2012, 21(9): 96102-096102.
[76] KITTEL C, MCEUEN P, MCEUEN P. Introduction to Solid State Physics: volume 8[M]. Wiley New York, 1996.
[77] KAMRAN S, CHEN K, CHEN L. Ab Initio Examination of Ductility Features of Fcc Metals[J]. Physical Review B, 2009, 79(2): 024106.
[78] SIMMONS G, WANG H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook[M]. Cambridge, Mass., M.I.T. Press, 1971.
[79] HAYWARD E, FU C C. Interplay between Hydrogen and Vacancies in 𝛼-Fe[J]. Physical Review B, 2013, 87(17): 174103.
[80] HAYASHI Y, HAGI H, TAHARA A . Diffusion Coefficients of Hydrogen and Deuterium in Iron Determined by Permeation with Gas, Ion and Electrochemical Charging[J]. Zeitschrift fuer Physikalische Chemie, Neue Folge, 1989, 164(pt1): 815-820.
[81] TAPASA K, OSETSKY Y, BACON D. Computer Simulation of Interaction of an Edge Dislocation with a Carbon Interstitial in 𝛼-Iron and Effects on Glide[J]. Acta Materialia, 2007, 55 (1): 93-104.
[82] NAGANO M, HAYASHI Y, OHTANI N, et al. Hydrogen Diffusivity in High Purity Alpha Iron [J]. Scripta Metallurgica, 1982, 16(8): 973-976.
[83] MAGNUSSON H, FRISK K. Diffusion, Permeation and Solubility of Hydrogen in Copper[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(1): 65-69.
[84] EBISUZAKI Y, KASS W J, KEEFFE M. Diffusion and Solubility of Hydrogen in Single Crystals of Nickel and Nickel—Vanadium Alloy[J]. The Journal of Chemical Physics, 1967, 46(4): 1378-1381.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
0331
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335911
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
郑智淋. 基于第一性原理的 α-Fe 固溶原子与位错相互作用研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930499-郑智淋-机械与能源工程(33771KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郑智淋]的文章
百度学术
百度学术中相似的文章
[郑智淋]的文章
必应学术
必应学术中相似的文章
[郑智淋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。