中文版 | English
题名

固体氧化物燃料电池的激光增材制造工艺开发

姓名
姓名拼音
LI Daixing
学号
12032319
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
严明
导师单位
材料科学与工程系
论文答辩日期
2022-05-05
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

固体氧化物燃料电池(Solid Oxide Fuel Cells,SOFCs)是一种具有清洁高效优势的新能源装置,但SOFC传统的制造工艺存在局限,例如:较大厚度和复杂结构的SOFC难以制备,后组装也无法摆脱繁琐的密封过程,共烧结工艺参数难以摸索等,因此开发一种新型的可对SOFC进行加工制造的工艺有很大的必要性。本论文旨在使用激光增材制造技术中的选区激光熔化(Selective Laser Melting,SLM)技术来对SOFC进行工艺开发。

本论文对Ni-Fe金属支撑层的SLM成型工艺、微观组织与相组成进行了研究。结果表明SLM技术适用于块体Ni-Fe的成型,并且成型的样品致密度最高达到了99.8%SLM成型的Ni-Fe支撑体元素分布均匀,没有出现相的转变和新相的生成。另外SLM成型的Ni-Fe存在一定的择优取向,其晶粒平均尺寸为90 μm。又对基于Ni-Fe+CrN粉末体系的多孔金属支撑层进行了SLM工艺探索。在引入发泡剂CrN后,试样的孔隙特征达到了SOFC金属支撑层的要求,其对应的能量密度集中在35 J/mm3~50 J/mm3范围

论文还对氧化钇稳定氧化锆(Yttria Stabilized Zirconia,YSZ)电解质层、Ni-YSZ阳极功能层、镧锶钴铁(La0.6Sr0.4Co0.2Fe0.8O3-δ,LSCF)阴极层进行了打印成型参数探索,确定了只有在低功率、小扫描速度、大搭接间距的参数下才能实现符合要求的Ni-YSZ、YSZ、LSCF的打印成型。其中符合SOFC阳极功能层(孔隙率30%~40%)的打印参数为能量密度30 J/mm3符合SOFC致密态电解质层的打印参数为激光功率80 W、扫描速度83 mm/s、搭接间距0.2 mm。符合SOFC阴极层(孔隙率30%~40%)的打印参数为激光功率60 W、扫描速度200 mm/s、搭接间距0.2 mm。 

论文在单层材料打印参数基础上,最后对电池进行了全打印研究。发现其Ni-YSZ、YSZ、LSCF离焦量参数为+4 mm时,可以实现目标厚度的打印。并且对全打印的SOFC进行电池性能测试,虽然发现其开路电压(0.02 V)低于理论开路电压(1.23 V),但是论文证明了激光增材制造技术有制造出SOFC的潜力。

其他摘要

Solid oxide fuel cells (SOFCs) are new energy devices with clean and efficient advantages. However, the traditional manufacturing process of SOFC often has limitations. For example, SOFC with large thickness and complex structure is difficult to prepare, and post-assembly cannot get rid of the tedious sealing process, and it is difficult to explore the co-sintering process parameters. Therefore, it is very necessary to develop a new process that can process SOFC. This thesis aims at process development of SOFC using Selective Laser Melting (SLM) technology in laser additive manufacturing.

In this dissertation, the SLM forming process, microstructure and phase composition of Ni-Fe metal support were studied. The results show that the SLM technology is suitable for the forming of Ni-Fe, and the density of the formed samples is up to 99.8%. The element distribution of the Ni-Fe support formed by SLM is uniform, and there is no phase transition and no new phase formation. In addition, the Ni-Fe formed by SLM has a certain preferred orientation, and the average grain size is 90 μm. Then, the SLM process was also explored for the porous metal support layer based on Ni-Fe+CrN powder system. After introducing the foaming agent CrN, the pore characteristics of the samples meet the requirements of the SOFC metal support layer, and the corresponding energy densities are concentrated in the range of 35 J/mm3~50 J/mm3.

The dissertation also explores the printing parameters of the YSZ electrolyte layer, Ni-YSZ anode functional layer, and LSCF cathode layer. It is determined that only under the parameters of low power, small scanning speed, and large hatch spacing can meet the requirements of Ni-YSZ, YSZ, LSCF printing. Among them, the printing parameters in line with the SOFC anode functional layer (porosity 30%~40%) are the energy density of 30 J/mm3. The printing parameters conforming to the SOFC dense electrolyte layer are the laser power of 80 W, the scanning speed of 83 mm/s, and the hatch spacing of 0.2 mm. The printing parameters suitable for the SOFC cathode layer (porosity 30%~40%) are laser power 60 W, scanning speed 200 mm/s, and hatch spacing 0.2 mm.

Based on the printing parameters of the single-layer material, the dissertation finally studies the full printing of the battery. It is found that the printing of the target thickness can be achieved when the defocus parameters of Ni-YSZ, YSZ and LSCF are +4 mm. The battery performance test was carried out on the fully printed SOFC, Its open circuit voltage (0.02 V) was found to be lower than the theoretical open circuit voltage (1.23 V), but the dissertation demonstrates that laser additive manufacturing has the potential to manufacture SOFCs.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] 黄静. 能源革命及其对经济发展的影响[J]. 当代经济,2017(11):30-31.
[2] 衣宝廉. 燃料电池—原理、技术及应用[M]. 北京:化学工艺出版社,2003:1-2.
[3] BOUDGHENE S A, TRAVERSA E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5):433-455.
[4] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: a review[J]. Progress in Materials Science, 2015, 72(51):141-337.
[5] 张三立. 430不锈钢支撑的固体氧化物燃料电池结构设计与优化研究[D]. 哈尔滨:哈尔滨工业大学,2019.
[6] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058):935-939.
[7] 奥海尔. 燃料电池基础[M]. 北京:电子工艺出版社,2007:79-80.
[8] ORMEROD R M. Solid oxide fuel cells[J]. Chemical Society Reviews, 2003, 32:17-28.
[9] WEIMAR M R, CHICK L A. Department of energy office of scientific and technical information[C]. USA, Report Number 22732, 2013.
[10] WONG K, HERNANDEZ A. A review of additive manufacturing[J]. ISRN Mechanical Engineering, 2012, 27(4):33-37.
[11] 卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化,2013,42(4):1-4.
[12] 栗晓飞. 国外增材制造标准分类与解析[J]. 电加工与模具,2020,5:56-59.
[13] YAO KP, YUN TC, YI HC, et al. Additive manufacturing of batteries[J]. Advanced Functional Materials, 2020, 30(1):1-22.
[14] 陈雪. 增材制造技术的应用与挑战[J]. 广东科技,2021,30(05):79-81.
[15] TAN H Y. Process development for laser based additive manufacturing of solid oxide fuel cells[D]. Nangyang Technological university, Singapore, 2019.
[16] PARK J, KIM D, BAEK J, et al. Effect of electrolyte thickness on electrochemical reactions and thermo-fluidic characteristics inside a SOFC unit cell[J]. Energies, 2018, 11(3):473-476.
[17] 毛宗强,王诚. 低温固体氧化物燃料电池[M]. 上海:上海科学技术出版社,2013,(5):25-26.
[18] 孙克宁. 固体氧化物燃料电池[M]. 北京:科学出版社,2019,(3):6-7.
[19] SANTOS T H, GRILO J P F, LOUREIRO F J A, et al. Structure, densification and electrical properties of Gd3+ and Cu2+ Co-doped ceria solid electrolytes for SOFC applications: effects of Gd2O3 content[J]. Ceramics International, 2018, 44(3):2745-2751.
[20] WAIN M A, MORAN R A, LAGUNA B M A, et al. SOFC cathodic layers using wet powder spraying technique with self-synthesized nanopowders[J]. International Journal of Hydrogen Energy, 2019, 44(14):7555-7563.
[21] ZHENG Y, LI Y, Wu T, et al. Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-δ/Nd0.8Sr1.2CoO4±δ heterointerfaces[J]. Nano Energy, 2018, 51:711-720.
[22] ABRAHAM G, PILLAY P, DEBANGSU B, et al. Solid oxide fuel cell modeling[J]. IEEE Transactions on Industrial Electronics, 2009, 56(1):139-148.
[23] PETER B, JOHAN H, TRINE K, et al. Manufacturing and characterization of metal supported SOFCs[J]. Journal of Power Sources, 2011, 196(17):7117-7125.
[24] CHEN L, YAO M, XIA C, et al. Anode substrate with continuous porosity gradient for tubular solid oxide fuel cells[J]. Electrochemistry Communications, 2014, 38:114-116.
[25] FERGUS J W. Electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2006, 162(1):30-40.
[26] PIRZADA M, GRIMES R W, MINERVINI L, et al. Oxygen migration in A2B2O7 pyrochlores[J]. Solid State Ionics, 2001, 140(3-4):201-208.
[27] KRAMER S A, TULLER H L, A novel titanate-based oxygen ion conductor: Gd2Ti2O7[J]. Solid State Ionics, 1995, 82(1-2):15-23.
[28] SHI HG, SU C, SHAO ZP, et al. Electrolyte materials for intermediate-temperature solid oxide fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6):764-774.
[29] ZHU W, DEEVI S. A review on the status of anode materials for solid oxide fuel cells[J]. Materials Science and Engineering: A, 2003, 362(1-2):228-239.
[30] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Progress in Materials Science, 2015, 72:141-337.
[31] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. Nickel and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. Journal of the Electrochemical Society, 2010, 157(2):279-284.
[32] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2):205-209.
[33] CHOUDHURY A, CHANDRA H, ARORA A, et al. Application of solid oxide fuel cell technology for power generation-a review Renew[J]. Renewable and Sustainable Energy Reviews, 2013, 20:430-436.
[34] 徐娜. Ni-Fe金属支撑型SOFC构建、优化及稳定性研究[D]. 北京:中国矿业大学,2018.
[35] SUN C, HUI R, ROLLER J, et al. Cathode material for solid oxide fuel cell: a review[J]. Journal of Solid State Electrochemistry, 2010,14:1125-1144.
[36] XIN X, LU Z, HUANG X, et al. Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process[J]. Journal of Power Sources, 2006, 160(2):1221-1224.
[37] LE S, SUN KN, ZHANG N, et al. Fabrication and evaluation of anode and thin Y2O3-stabilized ZrO2 film by co-tape casting and co-firing technique[J]. Journal of Power Sources, 2010, 195(9):2644-2648.
[38] ZHANG Y, HUANG X, LU Z, et al. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing[J]. Journal of Power Sources, 2006, 160(2):1065-1073.
[39] SRIVASTAVA P, QUACH K, et al. Electrode supported solid oxide fuel cells : Electrolyte films prepared by DC magnetron sputtering[J]. Solid State Ionics Diffusion & Reactions, 1997, 99(3-4):311-319.
[40] CHARPENTIER P, FRAGNAUD P, SCHLEICH D M, et al. Preparation of thin film SOFCs working at reduced temperature[J]. Solid State Ionics Diffusion & Reactions, 1998, 135(1-4):373-380.
[41] CHOUR K W, CHEN J, XU R. Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications[J]. Thin Solid Films, 1997, 304(1-2):106-112.
[42] OMETETE O O, JANNNEY M A, STRELOW. Gelcasting: a new ceramic froming process[J]. American Ceramic Society Bulletin, 1991, 70:1641-1647.
[43] 魏鲁阳. 3D打印技术在固体氧化物燃料电池中的应用[D]. 淄博:山东理工大学,2019.
[44] 曹继伟,吴甲民,陈张伟. 基于粉末成形的激光增材制造陶瓷技术研究进展[J]. 无机材料学报,2021,30(12):1-15.
[45] 樊恩想,刘小欣,吴欢欢. 激光选区熔化增材制造技术的发展[J]. 机械制造,2021,59(08):45-49.
[46] LI JC, CAO LC, ZHOU Q, et al. In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing[J]. Measurement, 2022, 187:1-15.
[47] TOLOCHKO N K, KHLOPKOV Y V, TITOV V I, et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal, 2000, 6(3):155-161.
[48] THOMPSON S M, LIN K B, AREF Y, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 2015, 8:36-62.
[49] 孙子文. 金属材料增材制造技术应用现状及发展趋势[J]. 广东科技,2021,30(08):99-102.
[50] MOSTAFA Y, ELBESTAWI M A, STEPHEN C V. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L[J]. Journal of Materials Processing Tech, 2019, 266:397-420.
[51] OLAKANMI E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties[J]. Journal of Materials Processing Tech, 2013, 213(8):1387-1405.
[52] WEI W, XIAO CJ, HUANG CX, et al. Hierarchical microstructure and enhanced mechanical properties of SLM-fabricated GH5188 Co-superalloy[J]. Materials Science and Engineering: A, 2022, 831:1-9.
[53] ZHAO YN, GUO QY, YU LM, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J]. Materials Science and Engineering: A, 2020, 791:323-331.
[54] SHI WT, LIU YD, SHI XZ, et al. Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V[J]. Materials, 2018, 11(7):16-33.
[55] DEMIR A G, MONGUZZI L, PREVITALI B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J]. Additive Manufacturing, 2017, 15:20-28.
[56] LI RD, WANG MB, LI ZM, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193:83-98.
[57] ZHANG JQ, LIU YG, ZHANG MX, et al. Achieving high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement[J]. Scripta Materialia, 2021, 191:155-160.
[58] WANG DW, ZHOU YH, YAN M, et al. Selective laser melting under the reactive atmosphere: A convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J]. Materials Science and Engineering: A, 2019, 762:19-31.
[59] RAN QC, YANG WH, CAI KY, et al. Osteogenesis of 3D printed porous Ti-6Al-4V implants with different pore Sizes[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84:1-11.
[60] JAROSLAV C, MARKETA M A, MICHAELA F A, et al. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting[J]. Materials Science and Engineering: C, 2016, 69:631-639.
[61] TOBIAS M, MARTIN L, BILL L, et al. SLM lattice structures: properties, performance, applications and challenges[J]. Materials and Design, 2019, 183:108-137.
[62] WILLIAMS J M, ADEWUNMI A, SCHEK R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials, 2005, 26(23):4817-4827.
[63] WANG ZY, SHEN YF, GU DD. Development of porous 316L stainless steel with novel structures by selective laser melting[J]. Powder Metallurgy, 2011, 54(3):225-230.
[64] ZENG GH, SONG T, YAN M, et al. 3D printing breathable mould steel: small micro meter-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing[J]. Materials and Design, 2019, 169:107-119.
[65] CAI C, GUO S, SHI YS, et al. 3D printing and chemical dealloying of a hierarchically micro-and nanoporous catalyst for wastewater purification[J]. ACS Applied Materials & Interfaces, 2021, 13(41):48709-48719.
[66] BERTRAND P, BAYLE F, COMBE C, et al. Ceramic components manufacturing by selective laser sinting[J]. Applied Surface Science, 2007, 254(4):989-992.
[67] LIU Q, SONG B, LIAO HL. Microstructure study on selective laser melting yttria stabilized zirconia ceramic with nera IR fiber laser[J]. Rapid Prototyping Journal, 2014, 20(5):346-354.
[68] LIU Q, SONG B, LIAO HL, et al. Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic[J]. Journal of Materials Processing Technology, 2015, 222:61-74.
[69] JUSTE E, PETIT F, LARDOT V, et al. Shaping of ceramic parts by selective laser melting of powder bed[J]. Journal of Materials Research, 2014, 29(17):2086-2094.
[70] WILKES J, MEINERS W, HAGEDORN Y C, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19(1):51-57.
[71] FAN ZQ, ZHAO YT, HUANG H, et al. Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping[J]. Acta Materialia, 2019, 170:24-37.
[72] TAN QY, FAN ZQ, ZHANG MX, et al. A novel strategy to additively manufacture 7075 aluminum alloy with selective laser melting[J]. Materials Science and Engineering: A, 2021, 821:141-156.
[73] FABRIZIO V, MARIO B, LAURA C, et al. Laser-based powder bed fusion of alumina toughened zirconia[J]. Additive Manufacturing, 2020, 31:100-106.
[74] WEI C, ZHANG ZZ, CHEN DX, et al. An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales[J]. International Journal of Extreme Manufacturing, 2021, 3(1):3-28.
[75] SING SL, LAM LP, CHUA CK, et al. Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between AlSi10Mg and C18400 copper alloy[J]. Materials Characterization, 2015, 107:220-227.
[76] YAO XY, TANG JC, YAN M, et al. Selective laser melting of an Mg/Metallic Glass hybrid for significantly improving chemical and mechanical performances[J]. Applied Surface Science, 2022, 580:152-199.
[77] DEMIR A G, BARBARA P. Multi-material selective laser melting of Fe/Al-12Si components[J]. Manufacturing Letters, 2017, 11:8-11.
[78] WEI C, LI L, ZHANG XJ, et al. 3D printing of multiple metallic materials via modified selective laser melting[J]. CIRP Annals Manufacturing Technology, 2018, 67(1):245-248.
[79] ZHANG YN, AMIT B. Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping[J]. Additive Manufacturing, 2018, 21:104-111.
[80] LI FQ, GAO ZZ, CHEN YB, et al. Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition[J]. Optics & Laser Technology, 2016, 77:134-143.
[81] TOMOV R, KRAUZ M, HOPKINS S C, et al. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(21):7160-7167.
[82] AHMED M E, TOSHIAKI Y, SOTA S, et al. Development of a dense electrolyte thin film by the ink-jet printing technique for a porous LSM substrate[J]. Journal of the American Ceramic Society, 2008, 91(1):346-349.
[83] CHHETR K P, DATAR D, CORMIER D. Novel SOFC processing techniques employing printed materials[J]. Advances in Materials Science for Environmental and Energy Technologies: Ceramic Transactions, 2012, 236(3):129-137.
[84] 屈飘,劳长石,陈张伟等. 燃料电池多孔陶瓷电极薄层的喷墨打印制造[J]. 硅酸盐学报,2020,48(10):1613-1621.
[85] SUKESHINI A M, CUMMINS R, REITZ T L, et al. Inkjet printing of anode supported SOFC: Comparison of slurry pasted cathode and printed cathode[J]. Electrochemical and Solid-State Letters, 2009, 12(12):176-179.
[86] HAN G D, BAE K, SHIM J H, et al. Inkjet printing for manufacturing solid oxide fuel cells[J]. ACS Energy Letters, 2020, 5(5):1586-1592.
[87] MANOGHARAN G, KIOKO M, LINKOUS C. Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation[J]. The Journal of the Minerals, 2015, 67(3):660-667.
[88] XING BH, YAO YX, ZHAO Z. Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing[J]. Scripta Materialia, 2020, 181:62-65.
[89] FERRAGE L, BERTRAND G, LENORMAND P. Dense yttria-stabilized zirconia obtained by direct selective laser sintering[J]. Additive Manufacturing, 2018, 21:472-478.
[90] 曾广豪. 透气模具钢S136的激光3D打印&增材制造[D]. 哈尔滨:哈尔滨工业大学,2019.
[91] XU L, WANG B, ZHU J, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Applied Surface Science, 2016, 379:39-46.
[92] JAMES A D, CANEPA P, ISIAM S M, et al. Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes[J]. Chemistry of Materials, 2019, 31(14):5296-5304.
[93] PRAKASH S B, KUMAR S S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 36:149-179.
[94] KIM S J, MARQUART T, FRANZEN H F. Structure refinement for Cr2N[J]. Journal of the Less Common Metals, 1990, 158(1):9-10.
[95] NIU H J, CHANG I T H. Instability of scan tracks of selective laser sintering of high speed steel powder[J]. Scripta Materialia, 1999, 41(11):1229-1234.
[96] 林振汉,林钢,张玲秀等. 氧化锆系的相结构和转变[J]. 稀有金属,2003,22(01):49-52.
[97] 张亮亮,王敏杰,张佳琪等. 离焦量对激光选区熔化CX马氏体时效不锈钢成形性能研究[J]. 中国激光,2021,48(22):193-207.
[98] METELKOVA J, KINDS Y, KEMPEN K, et al. On the influence of laser defocusing in selective laser melting of 316L[J]. Additive Manufacturing, 2018, 23:161-169.
[99] WAYNE E K, HOLLY D B, VICTOR M C, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(12):2915-2925.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM911.4, TP391.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335915
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李戴星. 固体氧化物燃料电池的激光增材制造工艺开发[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032319-李戴星-材料科学与工程(7357KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李戴星]的文章
百度学术
百度学术中相似的文章
[李戴星]的文章
必应学术
必应学术中相似的文章
[李戴星]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。