中文版 | English
题名

INVESTIGATION ON THE APPLICATION OF POLYLACTIC ACID FIBROUS MEMBRANES IN PROTECTIVE MASKS

其他题名
聚乳酸纤维膜在防护口罩中的应用研究
姓名
姓名拼音
ZHANG Chentao
学号
11930655
学位类型
硕士
学位专业
070305 高分子化学与物理
学科门类/专业学位类别
07 理学
导师
孙大陟
导师单位
材料科学与工程系
论文答辩日期
2022-05-05
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Commercial polypropylene masks are recognized as one of the most effective tools for individual protection, but its filtering efficiency decreases sharply with the decay of charges, and the environmental pollution caused by the low recycling rate and abandoned masks. Therefore, the development of degradable and reusable masks has become one of the most sustainable scenarios.

Polylactic acid (PLA), a biobased polymer, has received significant attention in air filtration media owing to its appealing features, such as good machinability, excellent biodegradability, and high mechanical properties. The air filtration efficiency of electrospun neat PLA masks, like that of other biopolymer fibers, is normally insufficient to meet application requirements, and their biodegradability is also limited by the initial hydrolysis.

In this thesis, diatom frustules (DFs) and PLA were used to produce PLA masks with excellent performances via electrospinning. The effects of DFs on the mechanical properties, thermodynamic properties and air filtration efficiency of the PLA fibers were studied. It was confirmed that the optimal concentration of DFs in the PLA/DFs fibers was 5%. According to the national mask standard, compared to disposable medical masks of N95 circulating on the market, the PLA/DFs nanofibrous membranes have a higher air filtration efficiency (> 99%), lower hydrostatic pressure resistance value (3.85 KPa), better performance of hydrophobic (134°) and ethylene oxide resistance. Moreover, durability test proved that the membranes can be reused repeatedly and eventually recycled.

We also evaluated the hydrolytic degradation of PLA in various solutions to investigate the effect of nanoparticles on the hydrolysis of the PLA fibers. Three different nanoparticles including SiO2, DFs and diamide were used in this thesis. It was proved that the incorporation of 5% DFs into the PLA fibers exhibits the fastest hydrolysis rate— 89% in alkaline solution in 14 days. The hydrolysis behavior and mechanism of PLA/DFs composites were systematically studied. The relationship between the hydrolysis rate and the content of the diatom shell in acid, alkali and neutral solutions was systematically investigated. The morphology changes of PLA/DFs composites under natural conditions proved the accelerated degradation effect of the PLA matrix.

In summary, the PLA/DFs nanofibrous membranes fabricated in this study have excellent filtration efficiency, durability and rapid degradation performance, which are superior in generate the green and reusable masks that are urgently needed at this stage and provide a new idea for the solving environmental pollution caused by the extensive use of masks.

 

关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] LU J G, JIN P, ENGLISH A S. Collectivism predicts mask use during COVID-19[J]. Proceedings of The National Academy of Science, 2021, 118(23):e2021793118.
[2] LASSAAD A, ABDERRAOUF T, ZIED K. Valorisation of face mask waste in mortar[J]. Innovative Infrastructure Solutions, 2021, 7(1):1-10.
[3] ZHANG Z, JI D, HE H, et al. Electrospun ultrafine fibers for advanced face masks[J]. Materials Science & Engineering R, 2021, 143:100594.
[4] CUI J, LU T, LI F, et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture[J]. Journal of Colloid And Interface Science, 2021, 582(Pt B):506-514.
[5] KISHORE R S, KUMAR S V, LAKSHMI S, et al. Hydro-assisted self-regenerating brominated n-alkylated thiophene diketopyrrolopyrrole dye nanofibers-a sustainable synthesis route for renewable air filter materials[J]. Small, 2020, 16(14):1906319.
[6] ROH S, SONG M, LEE K, et al. Experimental and computational investigation of intra- and interlayer space for enhanced depth filtration and reduced pressure drop[J]. ACS Applied Materials & Interfaces, 2020, 12(41):46804-46815.
[7] LOU Y, DING S, WANG B, et al. Controllable morphology of electrospun nanofiber membranes with tunable groove structure and the enhanced filtration performance for ultrafine particulates[J]. Nanotechnology, 2021, 32(31):315708.
[8] ARMENTANO I, BITINIS N, FORTUNATI E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering[J]. Progress in Polymer Science, 2013, 38(10-11):1720-1747.
[9] YADAV I C, DEVI N L, LI J, et al. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review[J]. Environmental Pollution, 2017, 227:414-427.
[10] ZHANG H, WANG S, HAO J, et al. Air pollution and control action in Beijing[J]. Journal of Cleaner Production, 2016, 112:1519-1527.
[11] KARAGULIAN F, BELIS C A, DORA C F C, et al. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level[J]. Atmospheric Environment, 2015, 120:475-483.
[12] WANG L, LUO D, LIU X, ET al. Effects of PM 2.5 exposure on reproductive system and its mechanisms[J]. Chemosphere, 2021, 264:128436.
[13] TRABOULSI H, GUERRINA N, IU M, et al. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter[J]. International Journal of Molecular Sciences, 2017, 18(2):243.
[14] INDIA. Fortune Business Insights. Air filters market size, share & covid-19 impact analysis, by type (cartridge filters, dust collectors, hepa filters, baghouse filters, and Others), By end user (residential, commercial and industrial), and regional forecast, 2021-2028[R/OL]. Maharashtra, DC: India. Fortune Business Insights,2021
[2022-2-25]. https://www.fortunebusinessinsights.com/industry-reports/air-filters-market-101676.
[15] WANG Z, CUI Y, FENG Y, et al. A versatile silk fibroin based filtration membrane with enhanced mechanical property, disinfection and biodegradability[J]. Chemical Engineering Journal, 2021, 426:131947.
[16] JU J T J, BOISVERT L N, ZUO Y Y, Face masks against COVID-19: Standards, efficacy, testing and decontamination methods[J]. Advances in Colloid and Interface Science, 2021, 292:102435.
[17] SW Y. The role of facial sebum secretion in acne pathogenesis: facts and controversies[J]. Clinics in Dermatology, 2010, 28(1):8-11.
[18] PODGÓRSKI A, BALAZY A, GRADOŃ L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61(20):6804-6815.
[19] ONDARÇUHU T, JOACHIM C. Drawing a single nanofibre over hundreds of microns[J]. Europhysics Letters, 1998, 42(2):215-220.
[20] MA P X, ZHANG R. Synthetic nano-scale fibrous extracellular matrix[J]. Journal of Biomedical Materials Research, 1999, 46(1):60-72.
[21] MARTIN C R. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials, 1996, 8(8):1739-1746.
[22] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
[23] HUANG Z-M, ZHANG Y-Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15):2223-2253.
[24] ALESSANDRO T, RICHARD L, ALEXANDER A, et al. Fabricating metamaterials using the fiber drawing method[J]. Journal of Visualized Experiments Jove, 2012(68):4299.
[25] LESTER G, HANMER J, COLES H. PTFE drawn films as alignment agents for liquid crystals[J]. Molecular Crystals and Liquid Crystals, 1995, 262:149-156.
[26] PÉREZ-PAGE M, YU E, LI J, et al. Template-based syntheses for shape controlled nanostructures[J]. Advances in Colloid and Interface Science, 2016, 234:51-79.
[27] ASENJO J A, ANDREWS B A. Aqueous two-phase systems for protein separation: Phase separation and applications[J]. Journal of Chromatography A, 2012, 1238:1-10.
[28] JIE G, JIE Z, ZHIMOU Y. Enzyme-instructed self-assembly (eisa) and hydrogelation of peptides[J]. Advanced Materials, 2020, 32(3):1805798.
[29] KHOSHNOUDI-NIA S, SHARIF N, JAFARI S M. Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles[J]. Trends in Food Science & Technology, 2020, 95:59-74.
[30] AGARWAL S, GREINER A. On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3):372-378.
[31] COOLEY J F. Apparatus for electrically dispersing fluids: US, 692631[P/OL], 1902-02-04. https://www.freepatentsonline.com/0692631.pdf.
[32] ANTON F. Process and apparatus for treating artificial threads[P/OL], 1934-08-28. https://www.freepatentsonline.com/1971627.html.
[33] ZELENY J. Instability of electrified liquid surfaces[J]. Physical Review, 1917, 10(1):1-6.
[34] TAYLOR, G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London, 1964, 280(1382):383-397.
[35] RAMAKRISHNA S, FUJIHARA K, TEO W-E, et al. An introduction to electrospinning and nanofibers[M]. Sinpore, World Scientific, 2008.
[36] DING B, LI C, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15):3685-3691.
[37] PONTRELLI G, GENTILI D, COLUZZA I, et al. Effects of non-linear rheology on the electrospinning process: a model study[J]. Mechanics Research Communications, 2014, 61:41-46.
[38] RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9):4531-4547.
[39] PELIPENKO J, KRISTL J, JANKOVI B, et al. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers[J]. International Journal of Pharmaceutics, 2013, 456(1):125-134.
[40] DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1):261-272.
[41] HARTMAN R P A, BRUNNER D J, CAMELOT D M A, et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode[J]. Journal of Aerosol Science, 2000, 31(1):65-95.
[42] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured fibers via electrospinning[J], 2001, 13(1):70-72.
[43] WU G, LI J, XU Z. Triboelectrostatic separation for granular plastic waste recycling: A review[J]. Waste Management, 2013, 33(3):585-597.
[44] LIU E K, HE W Q, YAN C R. 'White revolution' to 'white pollution' - Agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, 9(9):091001.
[45] THUSHARI G, SENEVIRATHNA J. Plastic pollution in the marine environment[J]. Heliyon, 2020, 6(8):04709.
[46] SHEN M, SONG B, ZENG G, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution[J]. Environmental Pollution, 263:114469.
[47] AVÉROUS L. Monomers polymers & composites from renewable resources[M]. Holand: Elsevier, 2008.
[48] DRUMRIGHT R E, GRUBER P R, HENTON D E, et al. Polylactic acid technology[J]. Advanced Materials, 2000, 12(23):1841-1846.
[49] HARTMANN M H. High molecular weight polylactic acid polymers[M]. Berlin: Springer, 1998.
[50] PENCZEK S, KOWALSKI A, DUDA A. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide[J]. Macromelecules, 2005, 38(20):8170-8176.
[51] TSUJI H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2007, 7(12):1299-1299.
[52] KAZUKI, FUKUSHIMA, YOSHIHARU, et al. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application[J]. Polymer International, 2006, 55(6):626-642.
[53] NROSLI N A, KARAMANLIOGLU M, KARGARZADEH H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review[J]. International Journal of Biological Macromolecules, 2021, 187:732-741.
[54] KALE G, AURAS R, SINGH S P, et al. Biodegradability of polylactide bottles in real and simulated composting conditions[J]. Polymer Testing, 2007, 26(8):1049-1061.
[55] ROSENTHAL T B. The effect of temperature on the ph of blood and plasma in vitro[J]. Journal of Biological Chemistry, 1948, 173(1):25-30.
[56] REED A M, GILDING D K. Biodegradable polymers for use in surgery -poly(glycolic)/poly(lactic acid) homo and copolymers [J]. Polymer, 1981, 22(4):494-498.
[57] NROSLI N A, KARAMANLIOGLU M, KARGARZADEH H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review[J]. International Journal of Biological Macromolecules, 2021, 187:732-741.
[58] LORENZO M, ANDROSCH R. Synthesis, structure and properties of poly(lactic acid)[M]. Berlin: Springer, 2018.
[59] JONG S, ARIAS E R, RIJKERS D, et al. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus[J]. Polymer, 2001, 42(7):2795-2802.
[60] GORDON R, LOSIC D, TIFFANY M A, et al. The glass menagerie: diatoms for novel applications in nanotechnology[J]. Trends in Biotechnology, 2009, 27(2):116-127.
[61] ROUND F E, CRAWFORD R M, MANN D G. The diatoms: biology & morphology of the genera[J]. Quarterly Review of Biology, 1990, 167(1):110-116.
[62] TAYLOR F B. Notes on diatoms : an introduction to the study of the Diatomaccae[J]. Nature, 1930, 125:922-923.
[63] YANG W, LOPEZ P J, ROSENGARTEN G. Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes[J]. Analyst, 2010, 136(1):42-53.
[64] SALIDO J, SÁNCHEZ C, RUIZ-SANTAQUITERIA J, et al. A low-cost automated digitalmicroscopy platform for automatic identification of diatoms[J]. Applied Sciences, 2020(10):6033.
[65] LOSIC D, ROSENGARTEN G, MITCHELL J, et al. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4):982-9.
[66] WILLIS L, PAGE K M, COX B. Discrete free-boundary reaction-diffusion model of diatom pore occlusions[J]. Plant Ecology & Evolution, 2010, 143(3):297-306.
[67] GEBESHUBER I, KINDT J, THOMPSON J, et al. Atomic force microscopy study of living diatoms in ambient conditions[J]. Journal of Microscopy, 2003, 212(3):292-299
[68] TURING A M. The chemical basis of morphogenesis[J]. Biological Sciences, 1952, 237(641):37-72.
[69] LUCA D S, ILARIA R, IVO R, et al. Lensless light focusing with the centric marine diatom Coscinodiscus walesii[J]. Optics Express, 2007, 15(26):18082.
[70] SMETACEK V. The giant diatom dump[J]. Nature, 2000, 406:574-575.
[71] GHOBARA M. Studies on the frustules of some diatom species and its applications in nanotechnology[J]. Trends in Analytical Chemistry, 2016, 30(9):1538-1548.
[72] LOSIC D, ROSENGARTEN G, MITCHELL J, et al. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4):982-9.
[73] CRESPIN J, YAM R, CROSTA X, et al. Holocene glacial discharge fluctuations and recent instability in East Antarctica[J]. Earth & Planetary Science Letters, 2014, 394:38-47.
[74] DU Y, FAN H, WANG L, et al. α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic[J]. Journal of Materials Chemistry A, 2013, 1(26):7729-7737.
[75] AL-DEGS Y S, MCMINN W. Remediation of wastewater containing heavy metals using raw and modified diatomite[J]. Chemical Engineering Journal, 2004, 99(2):177-184.
[76] CALISKAN N, KUL A R, ALKAN S, et al. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study[J]. Journal of Hazardous Materials, 2011, 193(193):27-36.
[77] DOBOR J, PERENYI K, VARGA I, et al. A new carbon–diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous & Mesoporous Materials, 2015, 217:63-70.
[78] ZHAO S, HUANG G, FU H, et al. Enhanced coagulation/flocculation by combining diatomite with synthetic polymers for oily wastewater treatment[J]. Separation Science & Technology, 2014, 49(7):999-1007.
[79] Zarnkow M, Mcgreger C, Mcgreger N. German beer[J]. Traditional Foods, 2016, 10:297-312.
[80] ZHANG W B, ADDIS P B. Evaluation of frying oil filtration systems[J]. Journal of Food Science, 2010, 57(3):651-654.
[81] REDAN B W, JABLONSKI J E, HALVERSON C, et al. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2670-2678.
[82] IVO S, RUTH F, FRANK H. Method for treating biomass for producing cell lysate containing plasmid DNA: US, 2002220449[P/OL]. 2008-05-27
[2022-02-25]. https://www.freepatentsonline.com/7378238.html
[83] HORN N, MARQUET M, MEEK J, et al. Process for reducing RNA concentration in a mixture of biological material using diatomaceous earth: EP, 5576196[P/OL]. 1996-19-11
[2022-02-25]. https://www.freepatentsonline.com/5576196.html
[84] BUYEL J F, GRUCHOW H M, RAINER F. Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers[J]. Frontiers in Plant Science, 2015, 6:1134.
[85] RAVI S K, SINGH V K, SURESH L, et al. Hydro‐assisted self‐regenerating brominated n‐alkylated thiophene diketopyrrolopyrrole dye nanofibers—a sustainable synthesis route for renewable air filter materials[J]. Small, 2020, 16(14):1906319.
[86] BARRETT J R. Assessing the health threat of outdoor air: lung cancer risk of particulate matter exposure[J]. Environmental Health Perspectives, 2014, 122:255-270.
[87] LEUNG W, SUN Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols[J]. Separation and Purification Technology, 2020, 250:116886.
[88] FXA B, YGA B, ETA B, et al. Fast fabricating cross-linked nanofibers into flameproof metal foam by air-drawn electrospinning for electrostatically assisted particle removal[J]. Separation and Purification Technology, 2021, 274:119076.
[89] JPCAB C, SCC D, XQW B, et al. Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: preparation, performance evaluation and mechanism insights[J]. Journal of Membrane Science, 2021, 633:119392.
[90] ZHOU M, HU M, QUAN Z, et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0.26 pollutants[J]. Journal of Colloid and Interface Science, 2020, 578:195-206.
[91] GARLOTTA D. A literature review of poly(lactic acid)[J]. Journal of Polymers & The Environment, 2001, 9(2):63-84.
[92] MOHMEYER N, BEHRENDT N, ZHANG X, et al. Additives to improve the electret properties of isotactic polypropylene[J]. Polymer, 2007, 48(6):1612-1619.
[93] SECKBACH J, GORDON R. Diatoms fundamentals and applications[M], New York:Wiley, 2018.
[94] WU B, SHA L, HAN H, et al. Biomass-based shape-stabilized phase change materials from artificially cultured ship-shaped diatom frustules with high enthalpy for thermal energy storage[J]. Composites Part B: Engineering, 2020, 205:108500.
[95] LYU S, WANG Y, HUANG J, et al. Sintering behaviors and properties of porous ceramics derived from artificially cultured diatom frustules[J]. Journal of TheAmerican Ceramic Society, 2020, 104(5):2378-2387.
[96] HUANG J, SUN D, WANG J K. Prospects for the application of artificially cultured diatom materials in energy and environment[J]. ES Energy & Environment, 2020, 8:3-4.
[97] CHEN X, LIAO B, CHENG L, et al. The microbial coinfection in COVID-19[J]. Applied Microbiology and Biotechnology, 2020, 104(5):7777-7785.
[98] BALOCH S, BALOCH M A, ZHENG T, et al. The Coronavirus disease 2019 (COVID-19) pandemic[J]. The Tohoku Journal of Experimental Medicine, 2020, 250(4):271-278.
[99] JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: A comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2020, 260(7):118185.
[100] SHEN M, ZENG Z, SONG B, et al. Neglected microplastics pollution in global COVID-19: Disposable surgical masks[J]. Science of The Total Environment, 2021, 790:148130.
[101] JIAN S. Interpretation of GB19083-2010 technical requirements for protective face mask for medical use[S/OL]. Beijing, DC: CHINA. China Personal Protective Equipment, 2011-02-01
[2022-02-25]. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGGT201102011.htm.
[102] CHEN M, JIANG J, FENG S, et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal[J]. Journal of Membrane Science, 2021, 635:119463.
[103] WANG X, CHEN D, ZHANG M, et al. Biodegradable polylactide/TiO2 composite fiber scaffolds with superhydrophobic and superadhesive porous surfaces for water immobilization, antibacterial performance, and deodorization[J]. Polymers, 2019, 11(11):1860.
[104] JIN W, XU C, HSU P et al. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter[J]. Nano Letters, 2016, 16(2):1270-1275.
[105] Wang C, FAN J, XU RUI, et al. Quaternary ammonium chitosan/polyvinyl alcohol composites prepared by electrospinning with high antibacterial properties and filtration efficiency[J]. Journal of Materials Science, 2019, 54(19):12522–12532.
[106] CHENG, Q, HUANG C, TOMSIA A P, et al. Freeze casting for assembling bioinspired structural materials[J]. Advanced Materials, 2017, 29(45):1703155.
[107] GOLI E, PETERSON S, GEUBELLE P. Instabilities driven by frontal polymerization in thermosetting polymers and composites[J]. Composites Part B: Engineering, 2020, 199:108306.
[108] BALGIS R, MURATA H, GOI Y, et al. Synthesis of dual-size cellulose–polyvinylpyrrolidone nanofiber composites via one-step electrospinning method for high-performance air filter[J]. Langmuir, 2017, 33(24):6127-6134.
[109] YANG S, WANG X, DING B, et al. Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting[J]. Nanoscale, 2011, 3:564-568.
[110] ZHANG Q, LI Q, ZHANG L, et al. Preparation of electrospun nanofibrous poly(vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment[J]. Chemical Engineering Journal, 2020, 399:125768.
[111] METTERS A T, BOWMAN C N, ANSETH K S. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks[J]. Journal of Physical Chemistry B, 2000, 104(30):7043-7049.
[112] LIM H A, KANG J H. Properties and biodegradability of polylactide for paper coating application - Poly(L-lactide) and poly(D-lactide) blend[J]. Applied Microbiology and Biotechnology, 2004, 36(5):53-61.
[113] RAI R, TALLAWI M, GRIGORE A, et al. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review[J]. Progress in Polymer Science, 2012, 37(8):1051-1078.
[114] ZARZYCKI R, MODRZEJEWSKA Z, NAWROTEK K, et al. Drug release from hydrogel matrices[J]. Ecological Chemistry and Engineering S, 2010, 17(2):117-136.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TQ342
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335916
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Zhang CT. INVESTIGATION ON THE APPLICATION OF POLYLACTIC ACID FIBROUS MEMBRANES IN PROTECTIVE MASKS[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930655-章晨涛-材料科学与工程(5360KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[章晨涛]的文章
百度学术
百度学术中相似的文章
[章晨涛]的文章
必应学术
必应学术中相似的文章
[章晨涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。