[1] LU J G, JIN P, ENGLISH A S. Collectivism predicts mask use during COVID-19[J]. Proceedings of The National Academy of Science, 2021, 118(23):e2021793118.
[2] LASSAAD A, ABDERRAOUF T, ZIED K. Valorisation of face mask waste in mortar[J]. Innovative Infrastructure Solutions, 2021, 7(1):1-10.
[3] ZHANG Z, JI D, HE H, et al. Electrospun ultrafine fibers for advanced face masks[J]. Materials Science & Engineering R, 2021, 143:100594.
[4] CUI J, LU T, LI F, et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture[J]. Journal of Colloid And Interface Science, 2021, 582(Pt B):506-514.
[5] KISHORE R S, KUMAR S V, LAKSHMI S, et al. Hydro-assisted self-regenerating brominated n-alkylated thiophene diketopyrrolopyrrole dye nanofibers-a sustainable synthesis route for renewable air filter materials[J]. Small, 2020, 16(14):1906319.
[6] ROH S, SONG M, LEE K, et al. Experimental and computational investigation of intra- and interlayer space for enhanced depth filtration and reduced pressure drop[J]. ACS Applied Materials & Interfaces, 2020, 12(41):46804-46815.
[7] LOU Y, DING S, WANG B, et al. Controllable morphology of electrospun nanofiber membranes with tunable groove structure and the enhanced filtration performance for ultrafine particulates[J]. Nanotechnology, 2021, 32(31):315708.
[8] ARMENTANO I, BITINIS N, FORTUNATI E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering[J]. Progress in Polymer Science, 2013, 38(10-11):1720-1747.
[9] YADAV I C, DEVI N L, LI J, et al. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review[J]. Environmental Pollution, 2017, 227:414-427.
[10] ZHANG H, WANG S, HAO J, et al. Air pollution and control action in Beijing[J]. Journal of Cleaner Production, 2016, 112:1519-1527.
[11] KARAGULIAN F, BELIS C A, DORA C F C, et al. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level[J]. Atmospheric Environment, 2015, 120:475-483.
[12] WANG L, LUO D, LIU X, ET al. Effects of PM 2.5 exposure on reproductive system and its mechanisms[J]. Chemosphere, 2021, 264:128436.
[13] TRABOULSI H, GUERRINA N, IU M, et al. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter[J]. International Journal of Molecular Sciences, 2017, 18(2):243.
[14] INDIA. Fortune Business Insights. Air filters market size, share & covid-19 impact analysis, by type (cartridge filters, dust collectors, hepa filters, baghouse filters, and Others), By end user (residential, commercial and industrial), and regional forecast, 2021-2028[R/OL]. Maharashtra, DC: India. Fortune Business Insights,2021
[2022-2-25]. https://www.fortunebusinessinsights.com/industry-reports/air-filters-market-101676.
[15] WANG Z, CUI Y, FENG Y, et al. A versatile silk fibroin based filtration membrane with enhanced mechanical property, disinfection and biodegradability[J]. Chemical Engineering Journal, 2021, 426:131947.
[16] JU J T J, BOISVERT L N, ZUO Y Y, Face masks against COVID-19: Standards, efficacy, testing and decontamination methods[J]. Advances in Colloid and Interface Science, 2021, 292:102435.
[17] SW Y. The role of facial sebum secretion in acne pathogenesis: facts and controversies[J]. Clinics in Dermatology, 2010, 28(1):8-11.
[18] PODGÓRSKI A, BALAZY A, GRADOŃ L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61(20):6804-6815.
[19] ONDARÇUHU T, JOACHIM C. Drawing a single nanofibre over hundreds of microns[J]. Europhysics Letters, 1998, 42(2):215-220.
[20] MA P X, ZHANG R. Synthetic nano-scale fibrous extracellular matrix[J]. Journal of Biomedical Materials Research, 1999, 46(1):60-72.
[21] MARTIN C R. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials, 1996, 8(8):1739-1746.
[22] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
[23] HUANG Z-M, ZHANG Y-Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15):2223-2253.
[24] ALESSANDRO T, RICHARD L, ALEXANDER A, et al. Fabricating metamaterials using the fiber drawing method[J]. Journal of Visualized Experiments Jove, 2012(68):4299.
[25] LESTER G, HANMER J, COLES H. PTFE drawn films as alignment agents for liquid crystals[J]. Molecular Crystals and Liquid Crystals, 1995, 262:149-156.
[26] PÉREZ-PAGE M, YU E, LI J, et al. Template-based syntheses for shape controlled nanostructures[J]. Advances in Colloid and Interface Science, 2016, 234:51-79.
[27] ASENJO J A, ANDREWS B A. Aqueous two-phase systems for protein separation: Phase separation and applications[J]. Journal of Chromatography A, 2012, 1238:1-10.
[28] JIE G, JIE Z, ZHIMOU Y. Enzyme-instructed self-assembly (eisa) and hydrogelation of peptides[J]. Advanced Materials, 2020, 32(3):1805798.
[29] KHOSHNOUDI-NIA S, SHARIF N, JAFARI S M. Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles[J]. Trends in Food Science & Technology, 2020, 95:59-74.
[30] AGARWAL S, GREINER A. On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3):372-378.
[31] COOLEY J F. Apparatus for electrically dispersing fluids: US, 692631[P/OL], 1902-02-04. https://www.freepatentsonline.com/0692631.pdf.
[32] ANTON F. Process and apparatus for treating artificial threads[P/OL], 1934-08-28. https://www.freepatentsonline.com/1971627.html.
[33] ZELENY J. Instability of electrified liquid surfaces[J]. Physical Review, 1917, 10(1):1-6.
[34] TAYLOR, G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London, 1964, 280(1382):383-397.
[35] RAMAKRISHNA S, FUJIHARA K, TEO W-E, et al. An introduction to electrospinning and nanofibers[M]. Sinpore, World Scientific, 2008.
[36] DING B, LI C, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15):3685-3691.
[37] PONTRELLI G, GENTILI D, COLUZZA I, et al. Effects of non-linear rheology on the electrospinning process: a model study[J]. Mechanics Research Communications, 2014, 61:41-46.
[38] RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9):4531-4547.
[39] PELIPENKO J, KRISTL J, JANKOVI B, et al. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers[J]. International Journal of Pharmaceutics, 2013, 456(1):125-134.
[40] DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1):261-272.
[41] HARTMAN R P A, BRUNNER D J, CAMELOT D M A, et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode[J]. Journal of Aerosol Science, 2000, 31(1):65-95.
[42] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured fibers via electrospinning[J], 2001, 13(1):70-72.
[43] WU G, LI J, XU Z. Triboelectrostatic separation for granular plastic waste recycling: A review[J]. Waste Management, 2013, 33(3):585-597.
[44] LIU E K, HE W Q, YAN C R. 'White revolution' to 'white pollution' - Agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, 9(9):091001.
[45] THUSHARI G, SENEVIRATHNA J. Plastic pollution in the marine environment[J]. Heliyon, 2020, 6(8):04709.
[46] SHEN M, SONG B, ZENG G, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution[J]. Environmental Pollution, 263:114469.
[47] AVÉROUS L. Monomers polymers & composites from renewable resources[M]. Holand: Elsevier, 2008.
[48] DRUMRIGHT R E, GRUBER P R, HENTON D E, et al. Polylactic acid technology[J]. Advanced Materials, 2000, 12(23):1841-1846.
[49] HARTMANN M H. High molecular weight polylactic acid polymers[M]. Berlin: Springer, 1998.
[50] PENCZEK S, KOWALSKI A, DUDA A. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide[J]. Macromelecules, 2005, 38(20):8170-8176.
[51] TSUJI H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2007, 7(12):1299-1299.
[52] KAZUKI, FUKUSHIMA, YOSHIHARU, et al. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application[J]. Polymer International, 2006, 55(6):626-642.
[53] NROSLI N A, KARAMANLIOGLU M, KARGARZADEH H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review[J]. International Journal of Biological Macromolecules, 2021, 187:732-741.
[54] KALE G, AURAS R, SINGH S P, et al. Biodegradability of polylactide bottles in real and simulated composting conditions[J]. Polymer Testing, 2007, 26(8):1049-1061.
[55] ROSENTHAL T B. The effect of temperature on the ph of blood and plasma in vitro[J]. Journal of Biological Chemistry, 1948, 173(1):25-30.
[56] REED A M, GILDING D K. Biodegradable polymers for use in surgery -poly(glycolic)/poly(lactic acid) homo and copolymers [J]. Polymer, 1981, 22(4):494-498.
[57] NROSLI N A, KARAMANLIOGLU M, KARGARZADEH H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review[J]. International Journal of Biological Macromolecules, 2021, 187:732-741.
[58] LORENZO M, ANDROSCH R. Synthesis, structure and properties of poly(lactic acid)[M]. Berlin: Springer, 2018.
[59] JONG S, ARIAS E R, RIJKERS D, et al. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus[J]. Polymer, 2001, 42(7):2795-2802.
[60] GORDON R, LOSIC D, TIFFANY M A, et al. The glass menagerie: diatoms for novel applications in nanotechnology[J]. Trends in Biotechnology, 2009, 27(2):116-127.
[61] ROUND F E, CRAWFORD R M, MANN D G. The diatoms: biology & morphology of the genera[J]. Quarterly Review of Biology, 1990, 167(1):110-116.
[62] TAYLOR F B. Notes on diatoms : an introduction to the study of the Diatomaccae[J]. Nature, 1930, 125:922-923.
[63] YANG W, LOPEZ P J, ROSENGARTEN G. Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes[J]. Analyst, 2010, 136(1):42-53.
[64] SALIDO J, SÁNCHEZ C, RUIZ-SANTAQUITERIA J, et al. A low-cost automated digitalmicroscopy platform for automatic identification of diatoms[J]. Applied Sciences, 2020(10):6033.
[65] LOSIC D, ROSENGARTEN G, MITCHELL J, et al. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4):982-9.
[66] WILLIS L, PAGE K M, COX B. Discrete free-boundary reaction-diffusion model of diatom pore occlusions[J]. Plant Ecology & Evolution, 2010, 143(3):297-306.
[67] GEBESHUBER I, KINDT J, THOMPSON J, et al. Atomic force microscopy study of living diatoms in ambient conditions[J]. Journal of Microscopy, 2003, 212(3):292-299
[68] TURING A M. The chemical basis of morphogenesis[J]. Biological Sciences, 1952, 237(641):37-72.
[69] LUCA D S, ILARIA R, IVO R, et al. Lensless light focusing with the centric marine diatom Coscinodiscus walesii[J]. Optics Express, 2007, 15(26):18082.
[70] SMETACEK V. The giant diatom dump[J]. Nature, 2000, 406:574-575.
[71] GHOBARA M. Studies on the frustules of some diatom species and its applications in nanotechnology[J]. Trends in Analytical Chemistry, 2016, 30(9):1538-1548.
[72] LOSIC D, ROSENGARTEN G, MITCHELL J, et al. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4):982-9.
[73] CRESPIN J, YAM R, CROSTA X, et al. Holocene glacial discharge fluctuations and recent instability in East Antarctica[J]. Earth & Planetary Science Letters, 2014, 394:38-47.
[74] DU Y, FAN H, WANG L, et al. α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic[J]. Journal of Materials Chemistry A, 2013, 1(26):7729-7737.
[75] AL-DEGS Y S, MCMINN W. Remediation of wastewater containing heavy metals using raw and modified diatomite[J]. Chemical Engineering Journal, 2004, 99(2):177-184.
[76] CALISKAN N, KUL A R, ALKAN S, et al. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study[J]. Journal of Hazardous Materials, 2011, 193(193):27-36.
[77] DOBOR J, PERENYI K, VARGA I, et al. A new carbon–diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous & Mesoporous Materials, 2015, 217:63-70.
[78] ZHAO S, HUANG G, FU H, et al. Enhanced coagulation/flocculation by combining diatomite with synthetic polymers for oily wastewater treatment[J]. Separation Science & Technology, 2014, 49(7):999-1007.
[79] Zarnkow M, Mcgreger C, Mcgreger N. German beer[J]. Traditional Foods, 2016, 10:297-312.
[80] ZHANG W B, ADDIS P B. Evaluation of frying oil filtration systems[J]. Journal of Food Science, 2010, 57(3):651-654.
[81] REDAN B W, JABLONSKI J E, HALVERSON C, et al. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2670-2678.
[82] IVO S, RUTH F, FRANK H. Method for treating biomass for producing cell lysate containing plasmid DNA: US, 2002220449[P/OL]. 2008-05-27
[2022-02-25]. https://www.freepatentsonline.com/7378238.html
[83] HORN N, MARQUET M, MEEK J, et al. Process for reducing RNA concentration in a mixture of biological material using diatomaceous earth: EP, 5576196[P/OL]. 1996-19-11
[2022-02-25]. https://www.freepatentsonline.com/5576196.html
[84] BUYEL J F, GRUCHOW H M, RAINER F. Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers[J]. Frontiers in Plant Science, 2015, 6:1134.
[85] RAVI S K, SINGH V K, SURESH L, et al. Hydro‐assisted self‐regenerating brominated n‐alkylated thiophene diketopyrrolopyrrole dye nanofibers—a sustainable synthesis route for renewable air filter materials[J]. Small, 2020, 16(14):1906319.
[86] BARRETT J R. Assessing the health threat of outdoor air: lung cancer risk of particulate matter exposure[J]. Environmental Health Perspectives, 2014, 122:255-270.
[87] LEUNG W, SUN Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols[J]. Separation and Purification Technology, 2020, 250:116886.
[88] FXA B, YGA B, ETA B, et al. Fast fabricating cross-linked nanofibers into flameproof metal foam by air-drawn electrospinning for electrostatically assisted particle removal[J]. Separation and Purification Technology, 2021, 274:119076.
[89] JPCAB C, SCC D, XQW B, et al. Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: preparation, performance evaluation and mechanism insights[J]. Journal of Membrane Science, 2021, 633:119392.
[90] ZHOU M, HU M, QUAN Z, et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0.26 pollutants[J]. Journal of Colloid and Interface Science, 2020, 578:195-206.
[91] GARLOTTA D. A literature review of poly(lactic acid)[J]. Journal of Polymers & The Environment, 2001, 9(2):63-84.
[92] MOHMEYER N, BEHRENDT N, ZHANG X, et al. Additives to improve the electret properties of isotactic polypropylene[J]. Polymer, 2007, 48(6):1612-1619.
[93] SECKBACH J, GORDON R. Diatoms fundamentals and applications[M], New York:Wiley, 2018.
[94] WU B, SHA L, HAN H, et al. Biomass-based shape-stabilized phase change materials from artificially cultured ship-shaped diatom frustules with high enthalpy for thermal energy storage[J]. Composites Part B: Engineering, 2020, 205:108500.
[95] LYU S, WANG Y, HUANG J, et al. Sintering behaviors and properties of porous ceramics derived from artificially cultured diatom frustules[J]. Journal of TheAmerican Ceramic Society, 2020, 104(5):2378-2387.
[96] HUANG J, SUN D, WANG J K. Prospects for the application of artificially cultured diatom materials in energy and environment[J]. ES Energy & Environment, 2020, 8:3-4.
[97] CHEN X, LIAO B, CHENG L, et al. The microbial coinfection in COVID-19[J]. Applied Microbiology and Biotechnology, 2020, 104(5):7777-7785.
[98] BALOCH S, BALOCH M A, ZHENG T, et al. The Coronavirus disease 2019 (COVID-19) pandemic[J]. The Tohoku Journal of Experimental Medicine, 2020, 250(4):271-278.
[99] JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: A comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2020, 260(7):118185.
[100] SHEN M, ZENG Z, SONG B, et al. Neglected microplastics pollution in global COVID-19: Disposable surgical masks[J]. Science of The Total Environment, 2021, 790:148130.
[101] JIAN S. Interpretation of GB19083-2010 technical requirements for protective face mask for medical use[S/OL]. Beijing, DC: CHINA. China Personal Protective Equipment, 2011-02-01
[2022-02-25]. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGGT201102011.htm.
[102] CHEN M, JIANG J, FENG S, et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal[J]. Journal of Membrane Science, 2021, 635:119463.
[103] WANG X, CHEN D, ZHANG M, et al. Biodegradable polylactide/TiO2 composite fiber scaffolds with superhydrophobic and superadhesive porous surfaces for water immobilization, antibacterial performance, and deodorization[J]. Polymers, 2019, 11(11):1860.
[104] JIN W, XU C, HSU P et al. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter[J]. Nano Letters, 2016, 16(2):1270-1275.
[105] Wang C, FAN J, XU RUI, et al. Quaternary ammonium chitosan/polyvinyl alcohol composites prepared by electrospinning with high antibacterial properties and filtration efficiency[J]. Journal of Materials Science, 2019, 54(19):12522–12532.
[106] CHENG, Q, HUANG C, TOMSIA A P, et al. Freeze casting for assembling bioinspired structural materials[J]. Advanced Materials, 2017, 29(45):1703155.
[107] GOLI E, PETERSON S, GEUBELLE P. Instabilities driven by frontal polymerization in thermosetting polymers and composites[J]. Composites Part B: Engineering, 2020, 199:108306.
[108] BALGIS R, MURATA H, GOI Y, et al. Synthesis of dual-size cellulose–polyvinylpyrrolidone nanofiber composites via one-step electrospinning method for high-performance air filter[J]. Langmuir, 2017, 33(24):6127-6134.
[109] YANG S, WANG X, DING B, et al. Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting[J]. Nanoscale, 2011, 3:564-568.
[110] ZHANG Q, LI Q, ZHANG L, et al. Preparation of electrospun nanofibrous poly(vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment[J]. Chemical Engineering Journal, 2020, 399:125768.
[111] METTERS A T, BOWMAN C N, ANSETH K S. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks[J]. Journal of Physical Chemistry B, 2000, 104(30):7043-7049.
[112] LIM H A, KANG J H. Properties and biodegradability of polylactide for paper coating application - Poly(L-lactide) and poly(D-lactide) blend[J]. Applied Microbiology and Biotechnology, 2004, 36(5):53-61.
[113] RAI R, TALLAWI M, GRIGORE A, et al. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review[J]. Progress in Polymer Science, 2012, 37(8):1051-1078.
[114] ZARZYCKI R, MODRZEJEWSKA Z, NAWROTEK K, et al. Drug release from hydrogel matrices[J]. Ecological Chemistry and Engineering S, 2010, 17(2):117-136.
修改评论