[1] IMMERZEEL W W, VAN BEEK L P, BIERKENS M F. Climate change will affect the Asian water towers [J]. science, 2010, 328(5984): 1382-1385.
[2] KUANG X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3979-4007.
[3] MA Y, MA W, ZHONG L, et al. Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia [J]. Scientific Reports, 2017, 7(1): 1-6.
[4] SONG C, HUANG B, KE L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data [J]. Remote Sensing of Environment, 2013, 135: 25-35.
[5] ZHANG G, YAO T, CHEN W, et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes [J]. Remote Sensing of Environment, 2019, 221: 386-404.
[6] ZHANG G, YAO T, PIAO S, et al. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades [J]. Geophysical Research Letters, 2017, 44(1): 252-260.
[7] KUANG X, JIAO J J. Review on climate change on the Tibetan plateau during the last half century [J]. Journal of Geophysical Research, 2016, 121(8): 3979-4007.
[8] LIU J, WANG S, YU S, et al. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau [J]. Global and Planetary Change, 2009, 67(3-4): 209-217.
[9] LIU X, CHEN B. Climatic warming in the Tibetan Plateau during recent decades [J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2000, 20(14): 1729-1742.
[10] MAUSSION F, SCHERER D, MöLG T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis [J]. Journal of Climate, 2014, 27(5): 1910-1927.
[11] ZHANG G, YAO T, XIE H, et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms [J]. Earth-Science Reviews, 2020, 208.
[12] 张丁玲. 青藏高原水资源时空变化特征的研究 [D]; 兰州大学, 2013.
[13] 李生辰, 徐亮, 郭英香, 等. 近34a青藏高原年降水变化及其分区 [J]. 中国沙漠, 2007, (02): 307-314.
[14] 王可丽, 江灏, 赵红岩. 西风带与季风对中国西北地区的水汽输送 [J]. 水科学进展, 2005, (03): 432-438.
[15] 马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布 [J]. 中国科学:地球科学, 2011, 41(03): 394-401.
[16] 朱立平, 张国庆, 杨瑞敏, 等. 青藏高原最近40年湖泊变化的主要表现与发展趋势 [J]. 中国科学院院刊, 2019, 34(11): 1254-1263.
[17] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应 [J]. 地学前缘, 2016, 23(04): 310-323.
[18] PEKEL J F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes [J]. Nature, 2016, 540(7633): 418-422.
[19] 万玮, 肖鹏峰, 冯学智, 等. 卫星遥感监测近30年来青藏高原湖泊变化 [J]. 科学通报, 2014, 59(08): 701-714.
[20] 姜永见, 李世杰, 沈德福, 等. 青藏高原近40年来气候变化特征及湖泊环境响应 [J]. 地理科学, 2012, 32(12): 1503-1512.
[21] 李均力, 盛永伟, 骆剑承, 等. 青藏高原内陆湖泊变化的遥感制图 [J]. 湖泊科学, 2011, 23(03): 311-320.
[22] YU J, ZHANG G, YAO T, et al. Developing daily cloud-free snow composite products from MODIS Terra–Aqua and IMS for the Tibetan Plateau [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2171-2180.
[23] ZHANG Y, ZHANG G, ZHU T. Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data [J]. Sci Total Environ, 2020, 703: 135563.
[24] YAO F, WANG J, WANG C, et al. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery [J]. Remote Sensing of Environment, 2019, 232.
[25] DAI K, WEN N, FAN X, et al. Seasonal changes of glacier lakes in Tibetan Plateau revealed by multipolarization SAR Data [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[26] 毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析 [J]. 遥感信息, 2012, 27(05): 77-82.
[27] 王海波, 马明国. 基于遥感的湖泊水域动态变化监测研究进展 [J]. 遥感技术与应用, 2009, 24(05): 674-684.
[28] MCFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. International Journal of Remote Sensing, 2007, 17(7): 1425-1432.
[29] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究 [J]. 遥感学报, 2005, (05): 589-595.
[30] FEYISA G L, MEILBY H, FENSHOLT R, et al. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery [J]. Remote Sensing of Environment, 2014, 140: 23-35.
[31] ABBAS A, MINALLH N, AHMAD N, et al. K-Means and ISODATA clustering algorithms for landcover classification using remote sensing [J]. Sindh University Research Journal, 2016, 48.
[32] ALTUNKAYNAK A. Forecasting surface water level fluctuations of lake van by Artificial Neural Networks [J]. Water Resources Management, 2006, 21(2): 399-408.
[33] CORTES C, VAPNIK V. Support-Vector Networks [J]. Machine Learning, 1995, 20(3): 273-297.
[34] VINCENZI S, ZUCCHETTA M, FRANZOI P, et al. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of ruditapes philippinarum in the venice lagoon, Italy [J]. Ecological Modelling, 2011, 222(8): 1471-1478.
[35] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[36] PAL M. Random forest classifier for remote sensing classification [J]. International Journal of Remote Sensing, 2005, 26(1): 217-222.
[37] BELGIU M, DRĂGU L. Random forest in remote sensing: A review of applications and future directions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.
[38] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
[39] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 247-259.
[40] 高子恒, 丁炜, 何静. 基于随机森林算法和MODIS数据的日喀则地区土地覆盖分类与动态监测 [J]. 安徽农业科学, 2020, 48(16): 1-12.
[41] 王琼, 王君波, 郭俊钰, 等. 基于支持向量机的色林错湖冰提取及时空分布 [J]. 载人航天, 2019, 25(06): 789-798.
[42] QAYYUM N, GHUFFAR S, AHMAD H M, et al. Glacial lakes mapping using multi satellite Planetscope imagery and deep learning [J]. ISPRS International Journal of Geo-Information, 2020, 9(10).
[43] 金永涛, 杨秀峰, 高涛, 等. 基于面向对象与深度学习的典型地物提取 [J]. 国土资源遥感, 2018, 30(01): 22-29.
[44] 杜敬. 基于深度学习的无人机遥感影像水体识别 [J]. 江西科学, 2017, 35(01): 158-161+170.
[45] 党宇, 张继贤, 邓喀中, 等. 基于深度学习AlexNet的遥感影像地表覆盖分类评价研究 [J]. 地球信息科学学报, 2017, 19(11): 1530-1537.
[46] 周岩, 董金玮. 陆表水体遥感监测研究进展 [J]. 地球信息科学学报, 2019, 21(11): 1768-1778.
[47] 陈斌, 王宏志, 徐新良, 等. 深度学习GoogleNet模型支持下的中分辨率遥感影像自动分类 [J]. 测绘通报, 2019, (06): 29-33.
[48] 苏龙飞, 李振轩, 高飞, 等. 遥感影像水体提取研究综述 [J]. 国土资源遥感, 2021, 33(01): 9-19.
[49] 王鑫, 徐明君, 李可, 等. 一种有效的高分辨率遥感影像水体提取方法 [J]. 计算机工程与应用, 2019, 55(20): 145-151.
[50] WENG L, XU Y, XIA M, et al. Water areas segmentation from remote sensing images using a separable residual SegNet network [J]. ISPRS International Journal of Geo-Information, 2020, 9(4).
[51] 何海清, 杜敬, 陈婷, 等. 结合水体指数与卷积神经网络的遥感水体提取 [J]. 遥感信息, 2017, 32(05): 82-86.
[52] 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究 [J]. 地理与地理信息科学, 2019, 35(04): 43-49.
[53] KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau [J]. Environmental Research Letters, 2010, 5(1).
[54] 韦志刚, 黄荣辉, 董文杰. 青藏高原气温和降水的年际和年代际变化 [J]. 大气科学, 2003, (02): 157-170.
[55] WANG W, XIANG Y, GAO Y, et al. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas [J]. Hydrological Processes, 2015, 29(6): 859-874.
[56] ZHANG G, LUO W, CHEN W, et al. A robust but variable lake expansion on the Tibetan Plateau [J]. Science Bulletin, 2019, 64(18): 1306-1309.
[57] 杨珂含. 基于多源多时相卫星影像的青藏高原湖泊面积动态监测 [D]; 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[58] 孙芳蒂. 中国主要湖泊面积2000-2010年动态遥感监测 [D]; 南京大学, 2013.
[59] GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone [J]. Remote Sensing of Environment, 2017, 202: 18-27.
[60] MARKHAM B L, STOREY J C, WILLIAMS D L, et al. Landsat sensor performance: history and current status [J]. IEEE transactions on geoscience and remote sensing, 2004, 42(12): 2691-2694.
[61] MARKHAM B L, HELDER D L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review [J]. Remote Sensing of Environment, 2012, 122: 30-40.
[62] CRéTAUX J F, ARSEN A, CALMANT S, et al. SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data [J]. Advances in Space Research, 2011, 47(9): 1497-1507.
[63] LI X, LONG D, HUANG Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions [J]. Earth System Science Data, 2019, 11(4): 1603-1627.
[64] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks; proceedings of the Advances in Neural Information Processing Systems, F, 2012 [C].
[65] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[66] WAGNER F H, SANCHEZ A, TARABALKA Y, et al. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images [J]. Remote Sensing in Ecology and Conservation, 2019, 5(4): 360-375.
[67] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation [Z]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018: 3-11.
[68] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[69] LI R, LIU W, YANG L, et al. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3954-3962.
[70] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [Z]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018: 833-851.10.1007/978-3-030-01234-2_49
[71] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. CoRR, 2015, abs/1409.1556.
[72] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[73] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [Z]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018: 3-19
[74] MOHAJERANI S, SAEEDI P. Cloud-Net+: A cloud segmentation CNN for Landsat 8 remote sensing imagery optimized with Filtered Jaccard Loss function [J]. ArXiv, 2020, abs/2001.08768.
[75] LIU W, CHEN X, RAN J, et al. LaeNet: A novel lightweight multitask CNN for automatically extracting lake area and shoreline from remote sensing images [J]. Remote Sensing, 2020, 13(1).
修改评论